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Key tasks in autonomous driving (AD)
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▪ Control (= decision making) of autonomous vehicles or delivery robots –

needs safety

▪ Modeling and simulation of realistic human agents’ multi-modal traffic 

behavior, e.g., to test and validate control algorithms against such models

– need generality of road situations, but also robustness

Source: Zheng et al.: End-to-end Interpretable 

Neural Motion Planner

Introduction
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Deep imitation learning, task formulation
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Powerful approach for such control and modeling problems: machine 

learning (ML), and especially deep imitation learning (IL):

▪ Given a data set of temporal trajectories of states s, actions a, 

(s1, a1), (s2, a2), …, (sT, aT) 

of demonstrator agent’s sequential decision making -- e.g., human driver

▪ Goal: from this data, learn an imitator agent 𝝅𝑰(𝒂|𝒔) – a probabilistic policy 

mapping state to action density – that behaves similarly to demonstrator

▪ More and more cheap data available: from drones, car sensors, etc.

▪ Deep IL is flexible and scalable - needs little human work on 

hand-crafting rules for each new situation

▪ Therefore, deep IL is booming in AD

[Igl et al, ‘22][Bansal et al, ’18] [Bhattacharyya et al, ‘20] [Tao et al, ’21] [Deo et al, ’18] [Tang et al, ‘19]

Source: Zheng et al.: End-to-end Interpretable 

Neural Motion Planner

Introduction
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Problem: robustness and safety
Introduction
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▪ Various IL algorithms suffer from compounding error problem. There are some mitigations for this.

▪ But: Generally, almost no work on guaranteeable safe/robust IL

▪ Of course: generally in ML/IL: fundamental problem of induction. That’s uncritical in some areas. 

▪ But: for autonomous driving (AD) control or simulation, we need safety/robustness arguments!



Internal | CR/AIR4.2 | 2023-09-15

© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

A broad landscape of types of mathematical guarantees in ML
Introduction
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Guarantee: proven statement about how a trained system will perform in deployment 

Form: often relative to some benchmark – otherwise no free lunch – inherent uncertainty in ML

Probabilistic statistical learning
• Often i.i.d.

• Law of large numbers, Central limit theorems, 

"Probably approximately correct" (PAC) bounds

• -> Often too weak/pessimistic

• Test-set based approaches (recent)

• Extreme Value Theory for AD

Adversarial robustness
• (in supervised learning)

• Take into account delibarate perturbations

Interpretability/identifiability
• Identifiability of parameters of a model (e.g., agent

preferences) -> our work (not presented today)

• Explainability

A priori safety biases, e.g.,

• Obtain „safe set of actions“ via worst-case reachability games

/ Hamilton-Jacobi type eq. / invariant sets

• Or via RSS from AD domain ("no-blame" if in utopia) 

[Shalev-Shwartz et al, `17]

• Then, constrain a learnable policy to output into the safe set

-> our safe IL (today)

Overall: few success stories, many limitations. But the problem does not go away! ML in AD is growing

Today: present one approach using a priory safety biases (constraints) for IL

(very preliminary)

Prediction = offline Control = online (key for AD)

Reinforcement learning
• RL, bandits, (Stochastic) optimization

• Convergence, in large sample limit, with enough exploration

• Probababilistic No-Regret bounds

• Adversarial No-Regret bounds

• Multi-agent -> Convergence to (Nash-)equilibria



Fail-Safe Adversarial 

Generative Imitation 

Learning
Published at TMLR

Joint work with Christoph-Nikolas Straehle
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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▪ Build on “GAIL”: Generative Adversarial Imitation Learning [Ho et al, ‘16], based on GANs
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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▪ Build on “GAIL”: Generative Adversarial Imitation Learning [Ho et al, ‘16], based on GANs

▪ Idea: add safety, but keep closed-form policy density/gradient, for end-to-end training (no cov. shift)
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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▪ Build on “GAIL”: Generative Adversarial Imitation Learning [Ho et al, ‘16] , based on GANs

▪ ``pre-safe generative policy’’ – take off-the-shelve Gaussian policy or Normalizing Flow policy with 

closed-form density
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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 Build on “GAIL”: Generative Adversarial Imitation Learning [Ho et al, ‘16]

 Idea: add safety, but keep closed-form policy density/gradient, for end-to-end training (no cov. shift)
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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 Build on “GAIL”: Generative Adversarial Imitation Learning [Ho et al, ‘16]

 Idea: add safety, but keep closed-form policy density/gradient, for end-to-end training (no cov. shift)
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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Safe action set via sample-based reachability analysis I
Fail-Safe Adversarial Generative Imitation Learning
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Image credit: "Computationally Efficient Fail-safe Trajectory Planning 

for Self-driving Vehicles Using Convex Optimization”

We build on the following idea from control engineering:

The set of safe actions is given by those potential current actions/motions,

for which at least one invariably safe future continuation trajectory exists 

(no unsafe states are reached)
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Define safe action set ഥ𝑨 at state s and time t, via adversarial/worst-case reachability analysis

Making this quantitative (safety value) instead of qualitative (safe set yes/no) will be helpful!

Total safety cost to go function 𝒘 :

then

Recall: 

𝝅 ego agent policy

𝝋 other agents and (adversarial) perturbations in the environment

d(st) momentary safety cost in state st

Safe action set via sample-based reachability analysis II
Fail-Safe Adversarial Generative Imitation Learning
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Safe action set via sample-based reachability analysis III
Fail-Safe Adversarial Generative Imitation Learning
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1. Calculate safety of finite sample of actions, 

2. conclude on safety of infinite set (inner approx. of safe set), via Lipschitz continuity (or convexity)!

action set

Safety radius = 
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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Our final neural net layer guarantees safety of actions:

Legend:

= current state

= “action” = next state

Safety layer 
(final layer in policy neural net)

Safe action always in

safe action set

safe action set

Pre-safe action

can be anywhere

complete action set… Pre-safe policy 

neural net layers …

Safety layer with closed-form probability density/gradient I
Fail-Safe Adversarial Generative Imitation Learning
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Safety layer with closed-form probability density/gradient II
Fail-Safe Adversarial Generative Imitation Learning
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▪ We want to use the change-of-variables formula, but its injectivity requirements are too rigid!

▪ So we combine change of variables with additivity of measures to allow for countable non-injectivity

▪ by using ``piecewise diffeomorphisms’’ as mappings for safety layers

This gives us closed-form differentiable policy density 𝝅𝑰𝜽(ഥ𝒂|𝒔) and gradient 𝛁𝜽𝝅
𝑰𝜽(ഥ𝒂|𝒔) , 

for policy-gradient based training (like GAIL, using, e.g., SAC, PG, …)!
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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Imitation performance guarantees w.r.t. safety layers I
Fail-Safe Adversarial Generative Imitation Learning
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Performance difference: test-time-only safety layer versus train-and-test time safety layer (ours)?
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Imitation performance guarantees w.r.t. safety layers II
Fail-Safe Adversarial Generative Imitation Learning
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• T = rollout horizon

• both results are on population-level 

performance during test time

Performance difference: test-time-only safety layer versus train-and-test time safety layer (ours)?
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Outline of our method
Fail-Safe Adversarial Generative Imitation Learning
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Experiments: driver imitation – safety and imitation performance
Fail-Safe Adversarial Generative Imitation Learning
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▪ ADE: average 

displacement error.

▪ FDE: final 

displacement error

▪ GAIL: Generative 

Adversarial Imitation 

Learning

▪ RAIL: Reward-

augmented GAIL

▪ TTOS: “Test-Time-

Only Safety” (train 

GAIL, then add safety 

layer at test time)
Each method in two versions: Gauss vs. Normalizing Flow as “pre-safe policy” 

Dataset: “highD” (highway driver trajectories)



Conclusions
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Conclusions
Fail-Safe Adversarial Generative Imitation Learning
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▪ Machine learning / imitation learning on the rise for autonomous driving

▪ But big open challenge to make it safe – inherent uncertainty in deployed ML/IL performance

▪ Showed rough landscape of possible approaches for mathematically validated safe ML

▪ Our specific approach builds on generative adversarial imitation learning (GAIL) and adds

− sample-based reachability analysis for guaranteed safe action sets,

− safety layers with closed-form density/gradient via “piecewise” change-of-variables,

− and the theoretical understanding of end-to-end generative training with safety layers.

▪ We are always looking for students for internships and master theses with an ML background!
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