

On Mathematical Guarantees in Machine Learning for Safe Autonomous Driving

By Philipp Geiger, Bosch Center for Artificial Intelligence

At Symposium on Applications of Mathematical Sciences, KIT, 29-09-2023

Introduction Key tasks in autonomous driving (AD)

 Control (= decision making) of autonomous vehicles or delivery robots – needs safety

 Modeling and simulation of realistic human agents' multi-modal traffic behavior, e.g., to test and validate control algorithms against such models

 need generality of road situations, but also robustness

Introduction Deep imitation learning, task formulation

Powerful approach for such control and modeling problems: machine learning (ML), and especially **deep imitation learning (IL)**:

- Given a data set of temporal trajectories of states s, actions a, (s₁, a₁), (s₂, a₂), ..., (s_T, a_T) of demonstrator agent's sequential decision making -- e.g., human driver
- **Goal:** from this data, learn an *imitator agent* $\pi^{I}(a|s)$ a probabilistic policy mapping state to action density that *behaves similarly to demonstrator*
- More and more cheap data available: from drones, car sensors, etc.
- Deep IL is flexible and scalable needs little human work on hand-crafting rules for each new situation
- Therefore, deep IL is booming in AD

[Igl et al, '22][Bansal et al, '18] [Bhattacharyya et al, '20] [Tao et al, '21] [Deo et al, '18] [Tang et al, '19]

Introduction Problem: robustness and safety

- Various IL algorithms suffer from *compounding error problem*. There are some mitigations for this.
- But: Generally, almost no work on guaranteeable safe/robust IL
- Of course: generally in ML/IL: **fundamental problem of induction**. That's uncritical in some areas.
- But: for autonomous driving (AD) control or simulation, we need safety/robustness arguments!

Introduction A broad landscape of types of mathematical guarantees in ML

Guarantee: proven statement about how a trained system will perform in deployment

Form: often relative to some benchmark - otherwise no free lunch - inherent uncertainty in ML

Prediction = offline

Control = online (kev for AD)

Overall: few success stories, many limitations. But the problem does not go away! ML in AD is growing

Today: present one approach using a priory safety biases (constraints) for IL

Internal | CR/AIR4.2 | 2023-09-1

0 Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Fail-Safe Adversarial Generative Imitation Learning Published at TMLR Joint work with Christoph-Nikolas Straehle

Build on "GAIL": Generative Adversarial Imitation Learning [Ho et al, '16], based on GANs

- Build on "GAIL": Generative Adversarial Imitation Learning [Ho et al, '16], based on GANs
- Idea: add safety, but keep closed-form policy density/gradient, for end-to-end training (no cov. shift)

- Build on "GAIL": Generative Adversarial Imitation Learning [Ho et al, '16], based on GANs
- ``*pre-safe generative policy*" take off-the-shelve Gaussian policy or Normalizing Flow policy with closed-form density BOSCH

isposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

- ▶ Build on "GAIL": Generative Adversarial Imitation Learning [Ho et al, '16]
- ► Idea: add safety, but keep closed-form policy density/gradient, for end-to-end training (no cov. shift)

BOSCH

- ▶ Build on "GAIL": Generative Adversarial Imitation Learning [Ho et al, '16]
- ► Idea: add safety, but keep closed-form policy density/gradient, for end-to-end training (no cov. shift)

Fail-Safe Adversarial Generative Imitation Learning Safe action set via sample-based reachability analysis I

Image credit: "Computationally Efficient Fail-safe Trajectory Planning for Self-driving Vehicles Using Convex Optimization"

We build on the following idea from control engineering:

The **set of safe actions** is given by those potential current actions/motions, for which at least **one invariably safe future** continuation trajectory exists (no unsafe states are reached)

Fail-Safe Adversarial Generative Imitation Learning Safe action set via sample-based reachability analysis II

Define **safe action set** \overline{A} at state s and time t, via adversarial/worst-case reachability analysis

 $\bar{A}_t^s := \{a \in A : \text{ it exists } \pi_{t+1:T}, \text{ s.t. for all } \varphi_{t:T}, t < t' \leq T, d(s_{t'}) \leq 0 \text{ holds, given } s_t = s, a_t = a\}$

Making this *quantitative* (safety value) instead of *qualitative* (safe set yes/no) will be helpful! Total safety cost to go function w:

$$w_t(s,a) := \min_{\pi_{t+1:T}} \max_{\varphi_{t:T}} \max_{t' \in t+1:T} d(s_{t'}), \text{ for all } t \qquad \text{then} \qquad \bar{A}_t^s = \{a : w_t(s,a) \le 0\}$$

Recall:

- π ego agent policy
- ϕ other agents and (adversarial) perturbations in the environment
- $d(s_t)$ momentary safety cost in state s_t

Fail-Safe Adversarial Generative Imitation Learning Safe action set via sample-based reachability analysis III

- 1. Calculate safety of **finite** sample of actions,
- 2. conclude on safety of infinite set (inner approx. of safe set), via Lipschitz continuity (or convexity)!

Proposition 1 (Lipschitz constants for Lipschitz-based safety). Assume the momentary safety cost d is α -Lipschitz continuous. Assume that for all (deterministic) ego/other policies $\pi_t \in \Pi_t, \sigma_t \in \Phi_t, t \in 1:T$, the dynamics $s \mapsto f(s, \pi_t(s), \sigma_t(s))$ as well as $a \mapsto f(s, a, \sigma_t(s))$ for fixed s are β -Lipschitz. Then $a \mapsto w_t(s, a)$ is $\alpha \max\{1, \beta^T\}$ -Lipschitz.

Safety radius =
$$\frac{w_t(s,a)}{\alpha \max\{1, \beta^T\}}$$

Fail-Safe Adversarial Generative Imitation Learning Safety layer with closed-form probability density/gradient I

Our final neural net layer guarantees *safety* **of actions**:

Fail-Safe Adversarial Generative Imitation Learning Safety layer with closed-form probability density/gradient II

- We want to use the **change-of-variables formula**, but its **injectivity** requirements are too rigid!
- So we combine change of variables with additivity of measures to allow for countable non-injectivity
- by using ``piecewise diffeomorphisms" as mappings for safety layers

Proposition 3 (Closed-form density for piecewise diffeomorphism). If g is such a piecewise diffeomorphism, $\bar{a} = g(\hat{a})$ and \hat{a} 's density is $p_{\hat{a}}(\hat{a})$, then \bar{a} 's density is

$$p_{\bar{a}}(\bar{a}) = \sum_{k:\bar{a}\in g_k(A_k)} |\det(J_{g_k^{-1}}(\hat{a}))| p_{\hat{a}}(g_k^{-1}(\bar{a})).$$
(5)

This gives us closed-form differentiable policy density $\pi^{I\theta}(\overline{a}|s)$ and gradient $\nabla_{\theta}\pi^{I\theta}(\overline{a}|s)$, for policy-gradient based training (like GAIL, using, e.g., SAC, PG, ...)!

Fail-Safe Adversarial Generative Imitation Learning Imitation performance guarantees w.r.t. safety layers I

Performance difference: test-time-only safety layer versus train-and-test time safety layer (ours)?

Remark 1
Then we get (Linear error in T of end-to-end train-and-test-time safety layer). Assume
$$D_{TV}(\rho^{I}, \rho^{D}) \leq \varepsilon$$
.
 $|v^{I} - v^{D}| \leq 2\varepsilon T ||c^{*}||_{\infty}$.

Fail-Safe Adversarial Generative Imitation Learning Imitation performance guarantees w.r.t. safety layers II

Performance difference: test-time-only safety layer versus train-and-test time safety layer (ours)?

Theorem 1 (Quadratic error in T of test-time-only safety layer). Lower bound (an "existence" statement): We can construct an environment¹¹ with variable horizon T and with a demonstrator, sketched in Fig. 2 and additional details in Appendix A.3.2, a universal constant ι , and, for every $\varepsilon > 0$, an unconstrained imitator π^U with $D_{TV}(\rho^D, \rho^U) \leq \varepsilon$, such that for the induced test-time constrained imitator π^O we have, for all $T \geq 2^{12}$,

$$|v^{O} - v^{D}| \ge \iota \min\{\varepsilon T^{2}, T\} ||c^{*}||_{\infty}.$$
 (6)

Upper bound (a "for all" statement): Assume $D_{TV}(\rho^D, \rho^U) \leq \varepsilon$ and assume $\rho^U(s)$ has support wherever $\rho^D(s)$ has. Then

$$|v^O - v^D| \le \frac{4\varepsilon}{\nu} T^2 ||_{\infty},$$

where ν is the minimum mass of $\rho^D(s)$ within the support of $\rho^D(s)$.

- T = rollout horizon
- both results are on population-level performance during test time

Fail-Safe Adversarial Generative Imitation Learning Experiments: driver imitation – safety and imitation performance

	Method	Imitation	performance	Safety performance
Pre-safe	Overall	ADE	FDE	Probability of crash/off-road
Gauss	FAGIL-E (ours)	0.59	1.70	0.00
	FAGIL-L (ours)	0.60	1.77	0.00
	GAIL Ho and Ermon (2016)	0.47	1.32	0.13
	RAIL Bhattacharyya et al. (2020)	0.48	1.35	0.22
	TTOS (Sec. 3.3)	0.60	1.78	0.00
Flow	FAGIL-E (ours)	0.58	1.69	0.00
	FAGIL-L (ours)	0.57	1.68	0.00
	GAIL Ho and Ermon (2016)	0.44	1.22	0.11
	RAIL Bhattacharyya et al. (2020)	0.53	1.50	0.11
	TTOS (Sec. 3.3)	0.59	1.72	0.00

Each method in two versions: *Gauss* vs. *Normalizing Flow* as "pre-safe policy" Dataset: "highD" (highway driver trajectories)

- ADE: average displacement error.
- FDE: final displacement error
- GAIL: Generative Adversarial Imitation Learning
- RAIL: Rewardaugmented GAIL
- TTOS: "Test-Time-Only Safety" (train GAIL, then add safety layer at test time)

Conclusions

Fail-Safe Adversarial Generative Imitation Learning Conclusions

- Machine learning / imitation learning on the rise for autonomous driving
- But big open challenge to make it safe inherent uncertainty in deployed ML/IL performance
- Showed rough landscape of possible approaches for mathematically validated safe ML
- Our specific approach builds on generative adversarial imitation learning (GAIL) and adds
 - sample-based reachability analysis for guaranteed safe action sets,
 - safety layers with closed-form density/gradient via "piecewise" change-of-variables,
 - and the theoretical understanding of end-to-end generative training with safety layers.

• We are always looking for students for internships and master theses with an ML background!

28 Internal | CR/AIR4.2 | 2023

© Robert Bosch GmbH 2023. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.