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Introduction

Internet of things, self-driving cars, etc.: many trends that increase
the number of connected intelligent agents (sensors and actuators)

Problem statement:
How can an agent autonomously integrate as much relevant
data (or higher level information) as possible from others
to inform causal model/ actions?

Examples:
I Road experience transfer between different self-driving cars
I Path descriptions based on landmarks or maps
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Previous work

Various approaches to various versions of this problem:
I Reinforcement learning (RL)
I Learning from demonstrations (LfD)
I Transfer learning for agents (TLA)
I Multi-agent systems (MAS)
I Knowledge representation

(Inaccurate? Missing something?)
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Our two perspectives on this problem:

1. Simulated experiments – to obtain better understanding
2. Causal models – e.g. for transfer across different agent

hardware

Structure for both:
I introduce toy instance of the problem
I illustrate approach
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Experimental view on information integration in autonomous agents

Problem instance: navigation from video in ‘Malmo’

Background: AI experimentation platform ‘Malmo’: library for
programming agents for ‘Minecraft’ (computer game) [Bignell2016]

Task: unknown landscape; navigate to visually recognizable goal

Available heterogeneous information:
I agent’s own sensors (position q, image y) and action (move

left/right/forward/backward) at each time t
I “local controller” (past experience on “local physical laws”)
I video y∗

0:L of a different (“source”) agent
that gets to the goal

NB: no actions given! – allows e.g. for differing
action spaces
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Experimental view on information integration in autonomous agents

A simple integrating agent algorithm

(Given: local controller ctl , source agent’s video y∗
1:L)

For i = 1, . . . , L
1. Use ctl and interaction with environment

to search locally around position qi−1
for position qi with image y most similar to y∗

i

(formally: qi := arg minq ‖Gauss ∗ (y∗
i − E(Y |Q = q))‖2)

2. Use ctl to go to qi

Proof-of-concept implementation - evaluation on next slide
I ctl := proportional controller based on previous experience
I uses teleportation in search for qi
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Experimental view on information integration in autonomous agents

Evaluation on “Malmo”

Source agents trajecory (blue) and integration method (red):

success fail success
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Causal view on information integration in autonomous agents

Problem instance: experience transfer between cars

Setup: two (or more) self-driving cars with different hardware

Task – w.l.o.g. for car 1: safely follow some trajectory (e.g. road)

Available heterogeneous information:
I hardware specifications of all cars (e.g. table with HP, ...)
I past experiences (actions/observations) of all cars
I influence structure between relevant variables (“causal DAG”,

see next slide)
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Causal view on information integration in autonomous agents

Background: causal models & transportability

Def.: diagram (DAG) plus factorizing distribution over set of
random variables [Pearl2000]

Reason about (identifiability of) outcomes of manipulations of
the underlying system

Main example: “X causes Y” := “intervening on X changes Y”

But useful for reasoning about related systems in general -
example:

Z YX

⇒ P(z , y |x) = P(z |x)P(y)
⇒ system P(z , y |x1) contains information P(y)

about modified system P(z , y |x2) [Pearl2011]
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Causal view on information integration in autonomous agents

Causal reasoning for toy scenario

ÿ(t)

F (t) G(t)

u(t) y(t)

HP

y : position
F : force from engine
G : other forces (friction etc.)

HP: horse powers
u: control signal

1. Assume two cars only differ in HP = hp1, hp2
2. causal DAG ⇒ car 2’s experience about mechanism p(G |y)

transferable to car 1.
3. Additivity of y & knowing p(F |u, hp1) ⇒ identify dynamics of

car 1

E.g.: Car 1 avoids slipping on oil spill at position not visited before
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Conclusions

Experimental view

I Simple “integrating agent” partially succeeded in toy
naviagtion task on “Malmo”

I Important: take several measuremens then averaging;
problem: repetitive structures

I NB: Other AI platforms exist, such as “OpenAI Gym”

Causal view

I encode mechanics and reason about transferability
I Unclear: can this be done by classical say Bayes nets?

Future directions
I Use machine learning to infer “integration mapping”
I “Universal representation”  n instead of n2 mappings
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