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Advertisement decision example

Setup: Ad department of some web shop

» A€ {0,1}: send letter to some person

» B e {0,1}: the person buys something

Question:

Distribution of B after sending/not sending ad letter in
current situation? (Have some goal w.r.t. A, B.)

Equivalent to: causal influence of A on B

Denote it by P(B|doA=a),a=0,1
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Background in causal models

Advertisement decision example — inference

Asm: In past situation, we recorded P(A, B, C), where C denotes,
say, gender (recall: A: send ad letter; B: buying)

Asm: P(A, B, C) generated by these | A=%(C,Ua) ¢

structural equations (“mechanisms”): B = f5(A, C. Up) / \
C :=fc(Uc) A B

Def: the effect P(B|do A=a) is given

by distribution of B after intervening c

on A, setting to constant a: B := fg(a, C, Ug) \
C = fc(Uc) a B

(Asm: other mechanisms invariant)

Conclude causal effect: P(B=b|do A=a) =), P(b|a, c)P(c)

(drop A := fa(C, Ua) < drop P(alc) from P(c)P(alc)P(bla,c))
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Background in causal models

General definition, hidden confounding

A=C C
B:=C / \
C:= fc(Uc) A B

Def. [Pearl 2000]: Given a set of variables V' a causal model M
consists of, for each X € V:

» a structural equation X := fx(PAx, Ux) for PAx C V

» a background variable Ux, with distribution P(Ux)
Causal model induces: DAG and post-interventional P(Y|do X=x)
Problem of hidden confounding: C hidden = P(B]|do a) undeterm.

In particular: P(b|do a) # P(b|a)
E.g.: (model above) = P(b|do a) = P(b) # 6.(b) = P(b|a)
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Causal questions relevant for decisions in medicine, business, etc.

— Thesis: causal models as a basis for data-driven decision making

Prev. causal models research: focus on exact and observational/iid

— Thesis: integrative and approximative inference of causal models

Proj. | integrates (besides obs.) | for decisions in publ. at

1 e temporal knowledge ICML'15

2 e bounds on e advertisement UAI '14
confounding

3 e partial models e debugging and arXiv

¢ e system specifications | e bidding in

talk ° cloud computing

Contributions: in the form of theorems, algorithms, and conceptual
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Overview: problem and contributions

Goal: causal model of dynamical system

X — x} — X3

Given: time series Xp.|
Background: time — causal ordering © //'/ //'Z

[Granger 1969]. R
But hidden Zy.; ® — barely studied

Example: X3: cheese price at t = 0; X: butter price at t = 1

Contributions:

» Three theorems: conditions for identifiability of influences in
spite of hidden confounders in VAR processes (approximately)

» Two propositions: genericity of several conditions

» Two algorithms: estimation from finite data (under cond.)
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Project 1: Causal inference from confounded time series

Spotlight: non-Gaussian identifiability — theorem

If (2>:<gg><§j>+m

X, Structural equations
> '] is VAR process
Z
> N independent and — X %
t are in
non-Gaussian / /
» Plus generic further
assumptions. 7 — 7
Example causal DAG
Then

given only P ((Xt)tez),
the matrix B is uniquely identifiable

Proof idea: overcomplete ICA on “finite noise” transform of (X;):
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Project 1: Causal inference from confounded time series

Spotlight: non-Gaussian identifiability — algo./eval.

”Best. - BHFrob.

(%)=(5 &) (5 )om

Our estimation algorithm:
Mixture of Gaussians as N;,
variational EM

Evaluation on simulated data:

—o— Our algorithm ||
—=— Granger

0.05 - n
i
\

!
00 2,000 4,000
sample length L

o
-

Eval. on real economic data:

X! cheese price

X2 | = butter price

4 milk price

gour 0.9166 0.0513
est. = | —0.0094 0.9828

BGranger _ 0.8707 0.0837
est. —0.0227 0.9559

> Presumed ground truth:
no direct eff. between X*

» Granger more self-consis-

tent (rel. to. complete)
10
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Overview: problem and contributions

Goal: infer strength of causal effect of Aon B

C
Given: /7\
A—— B
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» Various forms of additional knowledge confounding again

Background: “quasi-experiments” [Shadish et al. 2002] barely
using causal models (as introduced above)
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Project 2: Causal inference in i.i.d. settings by bounding confounding

Overview: problem and contributions

Goal: infer strength of causal effect of Aon B

C
Given: /7\
A—— B

> P(A, B) (via presumably i.i.d. observations) 5o
» Various forms of additional knowledge confounding again
Background: “quasi-experiments” [Shadish et al. 2002] barely
using causal models (as introduced above)
Contributions:

» Six theorems:
bounds on confounding = bounds on causal effect

» Several prototypical scenarios:
integration of additional knowledge = bounds on confounding

12
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Spotlight: addressing the ad decision example

Recall: Send out ad letters (A € {0,1}) to w C
influence buying behaviour (B € {0,1})?
ying (B € {0,1}) i VAIRN B

Here, assume that in a past situation:
» only P(A, B) was recorded — and, say, I(A: B) = 0.75
» C: unmeasured recommendation based on prelim. guidelines
» W: decision A was based on C (W=1) or done randomly
» have a rough estimate of P(W) —say P(W) = 0.5

Our results allow to integrate this information:
E.g.: for €4_,p, a measure of causal influence from A on B,

Casg > 1(A:B) — I(C:A) S T(A:B) — log,(|A|)P(W=1) > 0.25

13
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Conclusions

Summary: causal inference with focus on integration of additional
knowledge, approximations, and decision applications

Accomplishments — and potential future work:

> Project 1: time helps for removing hidden confounders
(barely studied before) — future: beyond linear

» Project 2: integrating knowledge that bounds confounding —
future: expand results together with domain experts

» Project 3 (¢ talk): results driven by cloud computing decision
problems — future: more sophisticated experiments

14
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