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Background in causal models

Advertisement decision example

Setup: Ad department of some web shop

I A ∈ {0, 1}: send letter to some person
I B ∈ {0, 1}: the person buys something

Question:

Distribution of B after sending/not sending ad letter in
current situation? (Have some goal w.r.t. A,B.)

Equivalent to: causal influence of A on B

Denote it by P(B|do A = a), a = 0, 1
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Background in causal models

Advertisement decision example – inference

Asm: In past situation, we recorded P(A,B,C), where C denotes,
say, gender (recall: A: send ad letter; B: buying)

Asm: P(A,B,C) generated by these
structural equations (“mechanisms”):

A := fA(C ,UA)
B := fB(A,C ,UB)
C := fC (UC )

BA

C

Def: the effect P(B|do A=a) is given
by distribution of B after intervening
on A, setting to constant a:

(Asm: other mechanisms invariant)

B := fB(a,C ,UB)
C := fC (UC ) Ba

C

Conclude causal effect: P(B=b|do A=a) =
∑

c P(b|a, c)P(c)

(drop A := fA(C ,UA) ⇔ drop P(a|c) from P(c)P(a|c)P(b|a, c))
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Background in causal models

General definition, hidden confounding

A := fA(C ,UA)
B := fB(A,C ,UB)
C := fC (UC )

BA

C

Def. [Pearl 2000]: Given a set of variables V a causal model M
consists of, for each X ∈ V :

I a structural equation X := fX (PAX ,UX ) for PAX ⊂ V
I a background variable UX , with distribution P(UX )

Causal model induces: DAG and post-interventional P(Y |do X=x)

Problem of hidden confounding: C hidden ⇒ P(B|do a) undeterm.

In particular: P(b|do a) 6= P(b|a)
E.g.: (model above) ⇒ P(b|do a) = P(b) 6= δa(b) = P(b|a)
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Motivation and overview over thesis (3 projects)

Causal questions relevant for decisions in medicine, business, etc.

→ Thesis: causal models as a basis for data-driven decision making

Prev. causal models research: focus on exact and observational/iid

→ Thesis: integrative and approximative inference of causal models

Proj. integrates (besides obs.) for decisions in publ. at
1 • temporal knowledge ICML’15
2 • bounds on

confounding
• advertisement UAI ’14

3
/∈
talk

• partial models
• system specifications
• ...

• debugging and
• bidding in

cloud computing

arXiv

Contributions: in the form of theorems, algorithms, and conceptual
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Project 1: Causal inference from confounded time series

Overview: problem and contributions
Goal: causal model of dynamical system

Given: time series X0:L

Background: time → causal ordering ,
[Granger 1969].
But hidden Z0:L / – barely studied

X1
0

X2
0

Z0

X1
1

Z1

X2
1

X1
2

Z2

X2
2

... ...

Example: X 1
0 : cheese price at t = 0; X 2

1 : butter price at t = 1

Contributions:
I Three theorems: conditions for identifiability of influences in

spite of hidden confounders in VAR processes (approximately)
I Two propositions: genericity of several conditions
I Two algorithms: estimation from finite data (under cond.)
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Project 1: Causal inference from confounded time series

Spotlight: non-Gaussian identifiability – theorem

If

I

(
Xt
Zt

)
is VAR process

I Nt are independent and
non-Gaussian

I Plus generic further
assumptions.

(
Xt
Zt

)
:=
(

B C
D E

)(
Xt−1
Zt−1

)
+ Nt .

Structural equations

X1
0

X2
0

Z0

X1
1

Z1

X2
1

X1
2

Z2

X2
2

... ...

Example causal DAG

Then
given only P ((Xt)t∈Z),
the matrix B is uniquely identifiable

Proof idea: overcomplete ICA on “finite noise” transform of (Xt)t
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Project 1: Causal inference from confounded time series

Spotlight: non-Gaussian identifiability – algo./eval.
(

Xt
Zt

)
:=
(

B C
D E

)(
Xt−1
Zt−1

)
+ Nt .

Our estimation algorithm:
Mixture of Gaussians as Nt ,
variational EM

Evaluation on simulated data:

0 2,000 4,000
0

0.05

0.1

sample length L

‖B
es

t.
−

B
‖ F

ro
b. Our algorithm

Granger

Eval. on real economic data: X 1

X 2

Z

 =

 cheese price
butter price
milk price



Bour
est. =

(
0.9166 0.0513
−0.0094 0.9828

)

BGranger
est. =

(
0.8707 0.0837
−0.0227 0.9559

)

I Presumed ground truth:
no direct eff. between X k

I Granger more self-consis-
tent (rel. to. complete)
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Project 2: Causal inference in i.i.d. settings by bounding confounding

Overview: problem and contributions
Goal: infer strength of causal effect of A on B

Given:

I P(A,B) (via presumably i.i.d. observations)
I Various forms of additional knowledge

BA
?

C

Problem of hidden
confounding again

Background: “quasi-experiments” [Shadish et al. 2002] barely
using causal models (as introduced above)

Contributions:
I Six theorems:

bounds on confounding ⇒ bounds on causal effect
I Several prototypical scenarios:

integration of additional knowledge ⇒ bounds on confounding
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Project 2: Causal inference in i.i.d. settings by bounding confounding

Spotlight: addressing the ad decision example

Recall: Send out ad letters (A ∈ {0, 1}) to
influence buying behaviour (B ∈ {0, 1})?

Here, assume that in a past situation:
BA

?

CW

I only P(A,B) was recorded – and, say, I(A : B) = 0.75
I C : unmeasured recommendation based on prelim. guidelines
I W : decision A was based on C (W =1) or done randomly
I have a rough estimate of P(W ) – say P(W ) = 0.5

Our results allow to integrate this information:
E.g.: for CA→B, a measure of causal influence from A on B,
CA→B

≥ I(A:B)− I(C :A)
corrected
≥ I(A:B)− log2(|A|)P(W =1) ≥ 0.25

13
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Conclusions

Summary: causal inference with focus on integration of additional
knowledge, approximations, and decision applications

Accomplishments – and potential future work:

I Project 1: time helps for removing hidden confounders
(barely studied before) – future: beyond linear

I Project 2: integrating knowledge that bounds confounding –
future: expand results together with domain experts

I Project 3 (/∈ talk): results driven by cloud computing decision
problems – future: more sophisticated experiments
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