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Abstract

Cloud computing involves complex technical and economical systems and
interactions. This brings about various challenges, two of which are: (1)
debugging and control to optimize the performance of computing systems,
with the help of sandbox experiments, and (2) privacy-preserving prediction
of the cost of “spot” resources for decision making of cloud clients.

In this paper, we formalize debugging by counterfactual probabilities and
control by post-(soft-)interventional probabilities. We prove that coun-
terfactuals can approximately be calculated from a “stochastic” graphical
causal model (while they are originally defined only for “deterministic” func-
tional causal models), and based on this sketch a data-driven approach
to address problem (1). To address problem (2), we formalize bidding by
post-(soft-)interventional probabilities and present a simple mathematical
result on approximate integration of “incomplete” conditional probability
distributions. We show how this can be used by cloud clients to trade off
privacy against predictability of the outcome of their bidding actions in a
toy scenario. We report experiments on simulated and real data.

1 Introduction

In recent years, the paradigm and business model of cloud computing [2] has become
increasingly popular. It allows to rent computing resources on-demand, and to use them
efficiently by sharing them in a smart way, in particular using auctions to sell unused
resources.

Several new challenges arise from the paradigm of cloud computing. On a technical level, it
is a problem to understand, control and debug the involved computing systems up to the size
of several data centers, with as much automation as possible, to optimize their performance.
We will go into more detail on this in Section 4.1. On an economical level, while auctions for
“spot” resources help providers to use resources more efficiently, the unpredictability of their
prices and performance complicates bidding and buying decisions for clients. We will go into
more detail on this in Section 5.1.

In the absence of exact models, it is natural to try to address such problems using data-driven
methods [16, 15, 23, 10, 25]. However, standard machine learning usually applies in settings
where the underlying system is invariant, often based on the assumption that samples are
i.i.d., and does not make predictions about the effect of interventions, which is important
though for debugging, decision making and integration of heterogeneous data.
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1.1 Contributions

The present paper takes first steps towards addressing challenges of cloud computing using
causal models. Inferring causal models from (observational) data is notoriously hard, and
convincing applications of causal modeling to real world problems are scarce. The present
paper is no exception in that the main focus is conceptual rather than empirical. Our main
contributions are:

• We present two theoretical results for approximations in causal modeling, Proposi-
tions 1 and 2, which are of relevance for the subsequent cloud problems and possibly
beyond, in Section 3. It needs to be emphasized that the practicability of these
theoretical results remains to be proved.

• In Section 4, we suggest first steps towards causal models and approximate coun-
terfactuals as a principled, data-driven approach for addressing cloud control and
performance debugging problems, integrating sandbox experiments.

• In Section 5, we use approximate integration of causal knowledge to enable cloud
clients to better predict performance and costs, while preserving privacy, in a toy
setting.

1.2 Structure

The remainder of this paper is structured as follows:
• in Section 3, we give brief introductions to causal models and cloud computing;
• Section 3 contains the definition of counterfactuals (in addition to our two theoretical
results);

• Section 6 contains simplistic real-world and simulated experiments for our two
approaches, as well as a preliminary causal model of a more realistic cloud system;

• in Section 7, we discuss related work;
• and we conclude the paper with Section 8.

2 Background

2.1 Causal models

Here we only give succinct definitions. For a more detailed introduction to causal models we
refer the reader to [17, 18, 24, 21].
In this paper, we generally assume variables to be discrete, although some results may also
hold for the continuous case. Let V be a set of variables. A graphical causal model (GCM)
[17, 24] over V consists of

• a directed acyclic graph (DAG) G with V as node set, called causal diagram or
causal DAG,
• a conditional probability density pX|PAX =paX

(for all paX in the domain of PAX)
for each X ∈ V , where PAX are the parents of X in G.

A functional causal model (FCM) M is a special GCM that includes, for each observed
variable X,

• a hidden root (i.e., parentless) background variable UX with an arrow only to X,
• such that X = fX(PAX , UX) for some function fX , i.e., X is fully determined by

PAX , UX .
Each FCM induces a CGM by dropping the background variables. By causal models we refer
to FCMs as well as CGMs.
Given a causal model M and a tuple of variables Z of M , the post-interventional causal
model Mdo Z=z is defined as follows: drop the variables in Z and all incoming arrows from
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the causal diagram, and fix the value of variables in Z to the corresponding entry of z in
all remaining conditional densities. Based on this, we define the post-interventional density
of Y after setting Z to z (relative to M), denoted by pY |do Z=z, by the the density of Y in
Mdo Z=z. Note that we will use expressions like p(x|y) as shorthand for pX|Y (x|y).
On a non-mathematical level, we consider M to be a correct causal model of some part of
reality, if it correctly predicts the outcomes of interventions in that part of reality (clearly
there are other reasonable definitions of causation).

2.2 Cloud computing

Traditionally, both businesses and individuals have used dedicated local computers, or
computer networks, for storing, managing and processing data. However, this can be
inefficient in several ways: the overhead of maintaining such an infrastructure is high, and
one needs to buy enough computers to handle peak loads, while during normal operation
most will remain unutilized
Cloud computing significantly changes this, by allowing computing resources to be rented on
demand. A company, the cloud provider, is now responsible for running all the hardware,
keeping it upgraded and sharing it amongst multiple clients. Such an infrastructure can be
run in a highly efficient manner: tens or hundreds of virtual machines (VMs), i.e., emulations
of computer systems, chartered by different clients, run on a single physical server and share
its resources such as central processing units (CPUs), memory and network. Note that we
refer to a system as being in production if this system does actual work for clients and visitors
and if contracts have to be met w.r.t. this system (in contrast, e.g., to an experimental
system).

3 Two approximations in causal modeling

3.1 Structural counterfactuals and an approximation

Let M0 be an FCM over a set V of variables, and let U denote the set of independent
background variables in M0. Let E,X, Y be (sets of) variables in V . The structural
counterfactual probability of Y being y, had X been x, given evidence E = e, can be defined
[17] based on M0 as1

p(Ydo X=x = y|e) :=
∑

u

p(y|do (x), u)p(u|e). (1)

Even though computer systems are “more deterministic” than many other systems, due to
interactions with the environment and missing information, usually one can only infer a
GCM, and not an FCM, of a computer system. Without an FCM though, counterfactual
probabilities (Equation (1)) are generally not uniquely determined, i.e., they cannot be
derived from a GCM. Let us give an example.
Example 1 (GCMs do not determine counterfactual probabilities). Let V = {X,Y } for
binary X,Y , and consider the GCM M with DAG X → Y and conditionals pX(0) = 1

2 and
pY |X(0|x) = pY (0) = 1

2 . M is induced by two very different FCMs. On the one hand, the
FCM M0 with structural equations

X := UX ,

Y := UY ,

and UX ∼ UY ∼ Uniform({0, 1}), where Uniform({0, 1}) denotes the uniform distribution
on {0, 1}, induces M . On the other hand, the FCM M ′0 with structural equations

X := UX ,

Y := X XORUY ,

1Note that [17] in his definition uses functions instead of (deterministic) conditionals.
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and UX ∼ UY ∼ Uniform({0, 1}) induces M . But in M0 we have
p(Ydo X=1 = 0|X = 0, Y = 0)

=
∑
uY

p(Y = 0|doX = 1, uY )p(uY |X = 0, Y = 0)

=
∑
uY

p(Y = 0|uY )p(uY |X = 0, Y = 0)

= 1 · 1 + 0 · 0 = 1,
while in M ′0 we have

p(Ydo X=1 = 0|X = 0, Y = 0)

=
∑
uY

p(Y = 0|doX = 1, uY )p(uY |X = 0, Y = 0)

=
∑
uY

p(Y = 0|X = 1, uY )p(uY |X = 0, Y = 0)

= 0 · 1 + 1 · 0 = 0.
This gives an extreme example of counterfactual probabilities not being determined by a GCM.
For a more detailed discussion of this phenomenon we refer the reader to [21].
Now we show that nonetheless counterfactual probabilities can be calculated approximately,
and one can know, from only the GCM, how wrong the approximation is at most – on
average. This will be important for our approach to debugging in Section 4, and, as we
belief, for other areas as well.
Let M be a GCM and let Z be the set of its root variables (variables with no parents in the
causal DAG). For any (sets of) variables X,Y,E in M we define the approximate structural
counterfactual or approximate counterfactual as2

p̃(Ydo X=x = y|e) :=
∑

w

p(y|do (x), w)p(w|e), (2)

where W := Z \X.
Proposition 1. Let M0 be an FCM that induces a GCM M , and let Z denote the root
variables in M . For all (sets of) variables E,X, Y we have

D(p(Ydo X=x|E)‖p̃(Ydo X=x|E)) ≤ H(E|Z), (3)
where p(Ydo X=x|e) is defined w.r.t. M0 and p̃(Ydo X=x|e) w.r.t. M .
We prove (using monotonicity of the KL divergence and properties of entropy) a generalization
of Proposition 1 – Proposition 3 – in Section A.1.3

Example 2. To give some intuition about the approximate counterfactual and the proposition,
let us first consider the following two special cases: If M is already an “FCM” in the sense
that all its variables are completely determined by the root nodes, then we have H(E|Z) = 0,
and thus, based on Equation (3), both quantities coincide, which seems natural. If the evidence
comprises the root nodes, Z ⊂ E, then the approximation amounts to the simple conditional
p(y|do (x), w) (where w is the part of e the corresponds to W ), similar as if we had evidence
on all background variables in an FCM.
Note that for the M in Example 1, the approximate counterfactual does not help much. It
can be calculated as

p̃(Ydo X=1 = 0|X = 0, Y = 0) = p(Y = 0|do (x)) = p(Y = 0) = 1
2

2The idea of a counterfactual definition based on only the GCM has been mentioned in [17,
Section 7.2.2], but not been further investigated. Depending on the specific setting and the available
information, there may be more suitable approximations to encode counterfactual-like probabilities.

3Note that, if we chose the set Z in Proposition 3 such that it is as “close” (in the causal diagram)
to Y as possible, this could yield better approximations than simply letting Z be the root nodes, as
done in p̄(Ydo X=x = y|e). We leave this as a question for future work.
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As is easy to see, this implies the KL divergence between p̃(Ydo X=1|X = 0, Y = 0) and
the true p(Ydo X=1|X = 0, Y = 0) under both, M0 and M ′0 of Example 1, to be 1. This
KL divergence coincides with the upper bound to the KL divergence in Proposition 1, since
H(X,Y |Y ) = 1 in Example 1.
The practical meaningfulness of the approximate counterfactual probability, in particular
for decision making, remains subject to debate. We will briefly comment on it in Remark 1
below.

3.2 Approximate integration of causal knowledge

The following result will be important for Section 5 since it can be used to preserve some
amount of privacy. Consider random variables C,X0, . . . , XK , Z. A typical causal structure
which satisfies the assumptions we make below is depicted in Figure 4 on page 13. Here
we introduce what can be seen as an approximation to “transportability”, as introduced by
Pearl and Bareinboim [19], Bareinboim and Pearl [5] (with various subsequent extensions
and versions [4, 6, 12]), in the following simple case: we would like to know p(z), we do know
the mechanism p(z|x0, . . . , xK) plus, from a different source, p(xk, c) for all k, but we do not
know p(x0, . . . , xK). Define the approximation

p̄(z) :=
∑

x0,...,xK ,c

p(z|x0, . . . , xK)
∏

k

p(xk|c)p(c). (4)

Proposition 2. If Z ⊥⊥ C|X0, . . . , XK , then D(p(Z)‖p̄(Z)) ≤
∑

k H(Xk|C).
Note that based on the proposition, again, we can know how wrong the approximation is at
most, using only the available information p(xk|c), p(c). A proof (again using monotonicity
of the KL divergence and properties of entropy), can be found in Section A.2.
Example 3. To get an intuition, consider the case that all Xk are fully determined by C:
then p̄(z) and p(z) coincide, which is reflected by

∑
k H(Xk|C) being 0. As already mentioned,

an example of a causal model which implies the condition of the proposition is depicted in
Figure 4 on page 13.
While here we apply the proposition for a predictability-privacy problem in Section 5, it is
more generally applicable where joint distributions are not available. In particular, while
in Section 5 we will focus on approximate integration for privacy reasons, an even more
frequent reason may be that only (insufficient) marginals are known. Keep in mind that
stronger statements on the set of possible p(z) under the available information may exist,
e.g., based on ideas in [3].

4 Problem 1 – models for control and debugging – and our
approach

We start with the problem statement (Section 4.1), followed by our approach (Section
4.2). Then we illustrate our approach in detail based on several toy scenarios and discuss
advantages over previous work (Section 4.3).

4.1 Problem statement

Cloud computing involves technical systems of the highest complexity, which have to be
controlled and debugged, ideally in a (semi-)automatic way. More specifically, the control
problem can be stated as follows: During the operation of a cloud server many decisions
automatically have to be made regarding how resources, such as complete computers, or
parts, such as CPU time, are allocated among the various applications or virtual machines
(VMs) of clients. The goal is to optimize this automatic decision making, based on some
given utility function, encoding, e.g., energy consumption, guarantees given to customers, or
simply profit.
The (performance) debugging problem (closely related to “performance attribution”) can
be formulated as follows: the general goal is to understand which component of a system
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contributes to what extent to the measured performance. Based on this, it can be decided
which components have to be modified to perform a “gradient step” towards the optimal
performance. To give an example, a cloud computing client may wonder whether the high
latency of his web server is caused from concurrent programs within his VM (which he could
directly intervene on), or by other, concurrent VMs on the same physical cloud sever. We will
come back to this example in Section 4.3, where we address a toy scenario, as well as Section
6.2, where we give an example of a preliminary but realistic causal model that can help in
such a situation. Note that we presently focus on debugging for individual observations, i.e.,
on the unit-level.
Usually, plenty of heterogeneous knowledge and data is available about the involved systems:
expert knowledge, formal program code and system specifications (often containing non-
causal associational knowledge), data from the very system or similar ones, and data from
sandbox experiments.

4.2 Outline of our approach

We now sketch several steps of a unified approach based on causal models, which can
potentially help to address the control and the debugging problem. In what follows, we will
refer to the cloud system “in production”, i.e., the fully configured system with a specific set
of applications, as the “target system”. Note that, depending on the specific setup, some
steps may be canceled.

4.2.1 Step 1A: inference of causal diagram and some mechanisms

Given: the various information sources described below.
Procedure: Keep in mind that the inference procedure we describe here is usually not based
on the target system itself, since some details of it (such as the specific VMs running on it)
are varying quickly, but instead on past experience with other systems of equal or similar
configuration. In particular, usually not all details of the target system are known during
this step, so that some mechanisms stay underdetermined, but can be inferred later during
Step 1B. As usual, the main sources for causal inference are randomized interventional
experiments, observational data, and expert knowledge. A necessary condition to harness the
first two sources is the decision about - and performance of - measurements of the system,
for which we propose to use tools discussed by Carata et al. [9], Snee et al. [23].
Note the important fact that many aspects of computer systems (hardware and software) are
- by design - modular, i.e., separable into individually manipulable input-output mechanisms,
which is a central assumption in causal models [17, 21]. To give a simple example: to see if
erroneous behavior is caused by the network, one can unplug the network cable and check
if the error occurs nonetheless – a procedure which generally would not change any other
mechanism, such as the CPU or keyboard. Furthermore, the same (or similar) mechanisms
occur in different systems, which is very helpful for extrapolation from experiments. Note
that there is an additional source of information which is specific to computer systems: a
lot of knowledge about non-causal associations, such as which program calls which other
program during execution, is available, often in a well-formatted way (e.g. program code or
system architecture specifications). Such information could be translated into hypotheses on
causal association (or be used for measurement selection), in a (semi-)automatic way.
The output of this procedure is a causal diagram G of the target system, together with those
mechanisms, i.e., conditionals in the causal model M of the target system, which can be
inferred based on past experience. For those mechanisms which cannot be known based on
past experience, but only when the target system is revealed (e.g., the specific VMs running
on it), but which cannot be explored directly on the target system either (since tentative
configurations may violate contracts with clients [10, 25]), we discuss the integration of
sandbox experiments in Step 1B below, which should then complete the causal model M .

4.2.2 Step 1B: design and integration of sandbox experiments

Given: an additional cloud system, the “experimental system”, equivalent in hardware to the
target system, the causal diagram G of the target system, some variable X (e.g. performance
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of some VM) in G, and the identity (e.g., VM) but not all properties of the mechanism that
produces X, and whose unknown properties should be inferred during the experiment.
Procedure: The knowledge of G allows to integrate sandbox experiments in a principled way:

1. Derive all direct influences of X from G, i.e., the parents PAX (which could include
resources such as CPU time or size of requests received from the internet).

2. Design the sandbox experiment on the experimental system such that (1) the
experimental system has the same conditional p(x|paX) as mechanism for X (e.g.,
by simply running the same VM on the experimental system as is planned to run on
the target system) and (2) all variables in PAX are randomly varied.

3. Based on the gathered data, regress X on PAX and plug the inferred conditional
p(x|paX) = p(x|do paX) as mechanism for X into M . This is possible since all
parents of X were “intervened” and regressed upon.

Without going further into detail, it needs to be mentioned that the transfer of the conditional
between experimental and target system can be seen as a simple example of “transportation”
of causal relations as defined by Pearl and Bareinboim [20].

4.2.3 Step 1C: control

Given: causal model M of the target system, some utility U , which is variable in M or a
function of one or several variables in M , and some variable X (e.g. concurrent workload,
CPU time, network bandwidth) in M , which should be controlled such as to optimize u (or
p(u)).
Procedure: As M predicts the effect on u of modifying any of its mechanisms, it can be used
to find the mechanism, or “policy”, p(x|paX) = π(x|paX), which maximizes u.

4.2.4 Step 1D: observation-level performance debugging

Given: causal modelM of the target system, a variable Y inM that measures the performance
which we want to optimize, a performance debugging query Q, and an (individual) observation
Y = y, F = f , where F contains all observables besides Y . (Since we move on the level
of individual observations instead of populations, we term this step “observation-level
performance debugging”.)
Procedure: For the performance debugging query Q, we assume the following form: “In the
current situation, would it improve performance Y from the current y to y′, if we would set
X to x′, given side information F = f?” The side information f may contain an observation
x of X. Stated this way, it seems natural to translate this query into a query for the
structural counterfactual probability p(Ydo X=x′ = y′|y, f).4 Then, based on Section 3.1 and
in particular Proposition 1, we can calculate the approximate answer p̃(Ydo X=x′ = y′|y, f)
from the GCM M , if H(E|Z) is small, where Z is a set of root nodes.
Remark 1 (The value of (approximate) counterfactuals for performance debugging). A
remark is due regarding the notion of a counterfactual and its application to performance
debugging. In the narrow sense, a counterfactual statement is always a statement about
the past and so it is neither falsifiable, nor can it help for any (falsifiable recommendations
regarding) future decision.
In contrast, here we have in mind a broader notion of a counterfactual: a situation where
one observes a system with a poor performance and asks how the performance could be
debugged when the system remains in the “same” state, or visits the same or similar states
again. (In the language of causal models, “state” means the tuple of background variables.)
This question is relevant in situations where the debugging action can be performed quickly
after the observation of poor performance, and where ones assumes that the state changes
comparably slowly, i.e., the state varies smoothly with time.5 Alternatively, the question

4Clearly, there are other ways to formalize attribution and debugging.
5It seems that a more thorough analysis of this argument might be fruitful, as it could theoretically

justify the frequent usage of counterfactual reasoning in everyday life. We leave this to future work.
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can be relevant if one has a good “subjective” judgement about the similarity of the state
between two points in time – if the judgement is based on pbjective observables though, a
non-counterfactual form of reasoning may be more appropriate.
Situations where counterfactual reasoning may be useful arise, in particular, whenever one
does not assume to “know” the population-level distribution of the state well enough (but one
beliefs in the structural equations), for instance, because it varies with time, and instead one
wants to reason on the observation-level, i.e., unit-level. Because on the population-level,
there are better ways for decision making than counterfactual reasoning, see Step 1C.
We propose one way to formalize performance debugging questions, and to answer them,
based on one possible formalization of counterfactual probabilities proposed by Pearl [17]. It
remains an open question whether there are better formalizations than ours for the debugging
questions we consider, and whether the general notion of a counterfactual probability, as well
as its formalization by Pearl [17], are sensible. For a discussion, see also [21].
Note that an additional issue, which we are not able to settle here, is how close our approxi-
mation of a counterfactual comes to the true counterfactual in practice.

4.3 Application to toy scenarios and discussion of potential advantages over
previous approaches

For researchers familiar with causal inference, some of the steps described above may seem
trivial. However, all current approaches to the described problems we are aware of are lacking
a principled (formal) language, with concepts such as causal sufficiency, for such things as
integration of sandbox experiments and performance debugging.
We will now give toy examples to make the approach outlined in Step 1B through Step 1D
more concrete, and simultaneously show the advantages of our approach based on causal
models over some previous approaches. (For examples of applications of Step 1A, see Sections
6.1 and 6.2.) Keep in mind that, clearly, the approach we outlined does not completely solve
the problem: the inference of knowledge it relies on remains a challenge as with all other
approaches. However, our approach may be less prone to errors and more data-efficient.

• Step 1B: Integrating sandbox experiments without a principled approach [10, 25],
can lead to errors: e.g., if not all parents (direct causes) of a variable X are varied
during the experiment and regressed upon afterwards or, say, X is regressed on its
causal children. Any methodology that does not include reasoning about concepts
such as causal effect, causal sufficiency or randomization is prone to such mistakes.
Let us give a toy example of how our approach works for sandbox experiments, and
how other approaches can go wrong in terms of variation and regression.
Example 4 (Design and integration of sandbox experiments, and possible mistakes).
Imagine we are the cloud provider and we want to decide whether we can put some
VM A on some cloud server, where already other concurrent VMs are running. Let
L ∈ {0, 1} denote the performance of (the main application running inside) A, with
L = 0 denoting good, and L = 1 bad performance. For instance, L could denote
some latency. Assume that Figure 1 depicts the correct causal DAG of the target
system, i.e., when A would be running on the mentioned cloud sever. In particular,
the performance depends on two factors, say amount of requests R ∈ {0, 1} coming
into A from the internet, on the one hand, and usage S ∈ {0, 1} of the CPU of the
cloud sever by the concurrent VMs, on the other, where 0 stands for “low” and 1 for
“high”. And in turn, R,S depend on H which may denote the state of the internet
users, which send requests to A but potentially also to concurrent VMs and therefore
also influence S. (Alternatively, H could denote a parameter for the behaviour of
the internet users, i.e., for the distribution of their states.)
Assume the true mechanism underlying L to be

L := RANDS,

where AND denotes the logical “AND”. I.e., the performance is bad iff A has to
serve many requests (R = 1) and at the same time CPU usage by concurrent VMs
is high (S = 1). Furthermore, assume that on the target system, we have R ≈ S.
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L

R S

H

Figure 1: Causal diagram when running VM A on the target system. Not varying S or not
regressing on S during the sandbox experiment can lead to wrong predictions of performance
L on the target system, especially when some hidden source H (say internet users) introduces
strong correlations between R and S.

For instance, this could be due to the fact that A and concurrent VMs serve internet
users in the same time zone. Additionally, assume p(R = 0) = p(S = 0) = 1

2 .
Suppose we have inferred the causal DAG in Figure 1 based on Step 1A. We now want
to infer the mechanism underlying the performance L, so, following Step 1B (taking
L as X), we would perform a sandbox experiment where we would vary both, R and
S, and afterwards regress on both, R and S. We would correctly infer the mechanism
L := RANDS. Additionally knowing p(r, s) (say from previous experience, or
from reports by the cloud clients) we would correctly predict the probability of bad
performance of A on the target system, p(L = 1), to be∑

r,s

p(L = 1|r, s)p(r, s) = 0 · 1
2 + 1 · 1

2 = 1
2

In contrast, without such a principled approach, two things can happen.
If in the sandbox experiment, only R is varied and regressed upon, while S is
kept to a constant 0 (because it was not properly inferred or communicated as an
influence factor, or simply because on the experimental system no concurrent VMs
are emulated), then p(L = 1) would be wrongly predicted as∑

r

p(L = 1|r, 0)p(r) = 0 · 1
2 + 0 · 1

2 = 0.

And even if in the sandbox experiment, S would be varied according to the correct
p(s) on the target system (e.g., because the concurrent VMs of the target system
would be emulated well on the experimental system), but if one would forget about
regressing on S, then still one would wrongly predict p(L = 1) to be∑

r

p(L = 1|r, s)p(r)p(s) = 0 · 1
4 + 0 · 1

4 + 0 · 1
4 + 1 · 1

4 = 1
4 .

Clearly, this was only a simplistic toy example, but to the best of the knowledge of
the author, such problems have not been thematized in the literature [10, 25] yet.
• Step 1C: Causal models provide a principled tool for control of cloud systems
that allows to integrate various forms of information, such as results of sandbox
experiments obtained in 4.2.2. Furthermore, compared to, e.g., [16], which is based
on adaptive control, an advantage of using causal models is that they allow to encode
and integrate knowledge about which mechanisms vary and which stay invariant.
Example 5 (Control based on causal models). Consider A, the same VM as in
Example 4, with performance L. Recall that there we inferred the mechanism for L
to be L := RANDS.
Now assume that we consider a different target system than in Example 4, namely,
a system that involves a policy π(r|s) that controls the amount S of CPU that is
occupied by VMs other than A. We depict the causal DAG in Figure 2.
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L

SR

H

π

Figure 2: Causal diagram when running A on a system controlled by policy π. It is similar
to the system in Figure 1, except that now S is influenced by the choice of the policy (as
well as the current R which serves as an input to the policy), and therefore we add π to the
diagram and draw an arrow to S. Note that handling the policy, which is rather a parameter
than a variable, in such a way is similar to the use of so-called “selection diagrams” in [20],
where the mechanisms that vary are marked by special nodes with arrows to them.

Suppose the goal is as follows: keep the probability of poor performance below 1
2 , i.e.,

p(L = 1|π) ≤ 1
2 , while allocating as little CPU as possible to A, i.e., minimizing

p(S = 0|π) (so that more CPU can be used by other VMs). Furthermore, assume
p(R = 0) = 1

2 , as in Example 4.
Using the causal DAG and “plugging in” our knowledge of the mechanisms, it is easy
to see that the optimal policy is π(S = 1|r) = 1, i.e., always occupy the CPU by
other VMs. Because then

p(L = 1|π) =
∑
r,s

p(L = 1|r, s)π(s|r)p(r) (5)

= p(L = 1|0, 1)1
2 + p(L = 1|1, 1)1

2 (6)

= 0 + 1
2 = 1

2 (7)

so the goal w.r.t. performance L is still met. This shows how causal models provide
a principled tool to integrate sandbox experiments, based on Step 1B, to perform
control, as proposed in Step 1C (the S here corresponds to the X there).
Let us mention a potential advantage of control based on causal models in case cloud
systems are time-varying. Assume H denotes a parameter for the behavior of the
internet users (we indicated this meaning in Example 4.2.2). Suppose H varies for
some reason, say due to an ad campaign, in an unpredictable way. We know that
the behavior of the internet users influences L only via R, since the rest of the cloud
system is not affected by the internet. This knowledge is encoded in the causal DAG
in Figure 2. Based on this, we have

p(l|r, s, h) = p(l|r, s).

So we have formally reasoned that even if H varies, the mechanism p(l|r, s) stays
the same. Hence, to derive the new optimal policy π, all one has to do is to infer
the new p(r) and plug it into Equation 5 (and optimize for π). Furthermore, we
can be certain that we identified the new system and the new optimal policy (given
our assumptions are correct). This sort of reasoning has been analyzed, on a more
general level, by Pearl and Bareinboim [20] (but they do not apply it to control
settings).
In contrast, approaches to (adaptive) control for cloud computing which are not based
on modularity and such reasoning [16] may try to infer the complete information,
p(r) as well as p(l|r, s), from scratch upon a variation of H, assuming it to be a
completely new “environment”. And even if such approaches utilize the invariant
p(l|r, s) after a variation of H in one way or another, they are usually missing the
language to reason about the identifiability of the new system (after the variation in
H), as we did above based on causal models.
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L

R S

Figure 3: Causal diagram for observation-level performance debugging in a toy setting. S is
unobserved, but nonetheless we assume p(l|r, s) to be known, may it be that the provider
publishes it, or the client knows it from own (sandbox) experiments.

It needs to be emphasized that here we considered an overly simplistic scenario. In
more complex and realistic scenarios, there are much more mechanisms involved that
could potentially vary or stay invariant, respectively. See Section 6.2 for an example
of a causal DAG of a more realistic but still simple cloud system.
• Step 1D: We now give en example for how observation-level debugging can be

performed based on Step 1D. This approach can be seen as complementary to other
methods for this problem [15], where errors may arise from confusing causation with
correlation, or where it is more difficult to integrate heterogeneous knowledge such
as sandbox experiments.
Example 6 (Observation-level performance debugging). Note that, while this is a toy
scenario, the assumptions we make in this example regarding what is known/observed
and what not are close to realistic [23].
Similar as in Example 4, consider a VM with performance (latency) L running on
a cloud system, with R ∈ {0, 1} denoting the amount of incoming requests, and
S ∈ {0, 1} the amount of, say, CPU time allocated to concurrent VMs (0 stands
for “low” and 1 for “high”). Here, denote the VM by B. In contrast to Example 4,
assume the causal DAG depicted in Figure 3. Furthermore, let L ∈ {0, 1, 2, 3} and
the structural equation for L be given by

L := R+ S + UL, (8)

with p(UL = 0) = 1
2 . Suppose p(S = R) = p(S = 0) = 1

2 , where p(S = 0) = 1
2 may

be seen as encoding some prior belief.
Now assume that the client whom B belongs to wonders, whether it would improve
the latency L to a desired 0 in the current situation where she observes L = 2, R = 1,
if she decreased the amount of incoming requests to a lower level, i.e., if she set R
to 0. (Note that “current situation” can include the nearby future, if the unobserved
variables vary comparably slowly, see Remark 1.) She does not observe S due to
neither the cloud provider nor other clients publishing this information. This is
a realistic assumption in cloud computing. Based on Step 1D, she translates this
question into a query for the counterfactual probability p(Ldo R=0 = 0|R = 1, L = 2).
Suppose that while S is not published, p(l|r, s) is known, may it be that the provider
publishes it, or the client knows it from own (sandbox) experiments. That is,
p(r), p(s) and p(l|r, s) are give, but not the structural Equation 8 itself. Now, al-
though the structural Equation 8 would be needed to calculate the counterfactual
p(Ldo R=0 = 0|R = 1, L = 2) exactly (see Example 1) she can calculate the approxi-
mate counterfactual probability defined in Equation 2 as

p̃(Ldo R=0 = 0|R = 1, L = 2)

=
∑

s

p(L = 0|doR = 0, s)p(s|R = 1, L = 2)

=
∑

s

p(L = 0|doR = 0, s)p(L = 2|R = 1, s)p(s|R = 1) 1
p(L = 2|R = 1)

= 1
4 ,
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where we plugged in R,S for the set of root variables Z, which yields S as W , and
as evidence E we took (R,L) with value (1, 2). Based on this, she concludes that the
probability that setting R to 0 helps for decreasing latency L to 0 is rather small (in
the current situation).
Note that the true counterfactual probability (Equation 1 in Section 3.1) in this
specific case is given by

p(Ldo R=0 = 0|R = 1, L = 2)

=
∑

uR,uS ,uL

p(L = 0|doR = 0, uR, uS , uL)p(uR, uS , uL|R = 1, L = 2)

=
∑
uL,s

p(L = 0|doR = 0, s, uL)p(s, uL|R = 1, L = 2)

= 0 + p(L = 0|doR = 0, S = 0, UL = 1)p(S = 0, UL = 1|R = 1, L = 2)
+ p(L = 0|doR = 0, S = 1, UL = 0)p(S = 1, UL = 0|R = 1, L = 2) + 0

= 0,

which would lead to the even stronger conclusion that setting R to 0 for decreasing
L to 0 would not work at all.
Note that the upper bound of Proposition 1 here takes the value

H(R,L|R,S) = H(L|R,S)

=
∑
r,s

p(r, s)H(L|r, s)

= 1.

Recall that we picked p(UL = 0) = 1
2 , i.e., rather strong noise. For less noise, the

approximation would be even better and the bound smaller.
Note that generally, one could try to learn (in the sense of machine learning) things such
as how to perform and integrate the experiment [23], but one would always have to rely on
prior assumptions, which may then be more difficult to encode.

5 Problem 2 – cost predictability versus privacy – and our
approach

We start with the problem statement (Section 5.1), followed by our approach (Section 5.2).
Then we present a toy example (Section 5.3), and some additional remarks (Section 5.4).

5.1 Problem statement

Here we consider an economical aspect of cloud computing. Currently, one common way
for clients to purchase cloud resources from a provider is via an auction mechanism for
“spot” (i.e., short-term) resources, which can be described in a simplified way as follows: The
customer enters a bid, e.g., for an hour of usage. Once the price determined by the provider
(based on supply, demand, and other private factors) drops below the bid, the customer gets
the resource, usually as long as her bid exceeds the price (within the hour). This approach
has several advantages, in particular for the provider: he can sell resources which are unused
but which fluctuate a lot (due to guarantees given to “dedicated” or “on-demand” customers).
But clients can profit as well: the spot resources are usually significantly cheaper than the
long-term dedicated resources.
An obvious drawback of spot resources is that this kind of mechanism comes with a high
uncertainty for the clients: it is hard to tell how the prices will evolve in the future, and,
in particular, purchased resources can be terminated in an unforeseeable way, which is, to
some extent, due to the unpredictability of the other clients. Therefore, if the client does not
want to take these risks which can significantly harm his/her business, they often avoid this
mechanism.

12
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Figure 4: Causal diagram G2. D is hidden.

5.2 Sketch of our approach

In what follows, we present a very first step towards addressing the problem based on
available observational data and causal models. We assume that there is one provider, and
clients 1, . . . ,K. By “stakeholders” we refer to provider and clients together. For each point
in time (say, the beginning of an hour), let Xk denote client k’s demand for the next hour,
Yk the cloud product that the client buys from the provider, Wk the information based on
which the client decides her demand (e.g., hour of the day), which may not always be fully
known though, and πk her policy determining which cloud product Yk to buy, given her
demand Xk. Let X0 denote the provider’s pricing parameter at that time point (which may
depend, e.g., on energy costs), and let Z denote the outcome of the provider’s mechanism
applied to the Yk. (Generally, Z can include the price as well as say termination of spot
resources; for simplicity, let it only denote the cost/price for the moment, which can comprise
the indirect costs resulting from loss of visitors through termination.)

We assume the following simple mechanism (which is a simplified version of the auction
described above): all clients k always get the product they want, but the subsequent price
vector Z varies and is not known in advance. The causal diagram G2 for the complete causal
structure, for the case K = 2, is depicted in Figure 4. The role of C will be explained below,
while D denotes the hidden part of the confounder (C,D).

Our approach to the uncertainty problem, towards more predictable prices and subsequent
reduced costs, is based on the idea that clients may not want to share all, but are willing
to share some of their information between each other. More specifically, we propose the
following two-step procedure which allows the clients to trade off privacy versus predictability
interests, by jointly picking a variable C such that p(Xk|C) allows an approximate prediction
of Z which still preserves some privacy.6

5.2.1 Step 1A: jointly picking C

First, all stakeholders k pick their candidates for C (possibly based on a given list and
some “privacy budget”), balancing their privacy interests against minimizing H(Xk|C). If
the intersection of their candidates is non-empty, they reveal H(Xk|C) for all k and joint
candidates C.7 They pick the C that minimizes

∑
k H(Xk|C) to optimize the predictability,

based on Proposition 2.

5.2.2 Step 2B: prediction and individual decision

Now all clients k reveal their p(xk|c). p(c) is assumed to be common knowledge. Furthermore,
all p(yk|xk, πk) are either known a priori (based on the possible products the provider offers)

6An extreme approach would be to directly infer a joint model for all clients from their joint
data (i.e., considering all clients as a “single client”). Here we assume that this is not possible, due
to heterogeneous data, privacy interests, etc.

7If the intersection is empty, the procedure is canceled without result, and the stakeholders
proceed in the classical, non-collaborative way.
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or revealed now. The provider reveals p(z|x0, y0, . . . , yK) and p(x0|c). Now p̄(z|π1, . . . , πK)
can be calculated, based on Equation 4. More specifically, we have

p̄(z|π1, . . . , πK) =
∑

x0,...,xK

p(z|x0, . . . , xK ;π1, . . . , πK)
K∏

k=0
p(xk|c)p(c)

=
∑

x0,...,xK

( ∑
y1,...,yK

p(z|x0, y1, . . . , yK)
K∏

k=1
p(yk|xk;πk)

)
K∏

k=0
p(xk|c)p(c)

Then, based on Proposition 2, the clients narrow down the set of possible p(z|π1, . . . , πK) to
those for which

D(p(Z|π1, . . . , πK)‖p̄(Z|π1, . . . , πK)) ≤
∑

k

H(Xk|C).

Based on this constraint on p(z|π1, . . . , πK), each client k decides on their strategy πk, e.g.,
based on game-theoretic considerations.

5.3 Application to toy scenario

To illustrate the approach, let us give an example.
Example 7. A cloud provider, Clark, offers to his clients, Alice (k = 1) and Bob (k = 2),
monthly (dedicated) large resources (Yk = 2), rather expensive, or hourly spot small (Yk = 0)
and large (Yk = 1) resources, which are usually cheaper. However, if Alice and Bob happen
to both order large spot resource for the same hour, the cost for both of them ([Z]1, [Z]2) is
significantly higher than the hourly rate for the monthly large resource, since Clark may have
to buy a new resource, or he may have to cancel one of his client’s applications, causing the
loss of web site visitors. Now assume Alice and Bob, during Step 1A, pick the hourly weather
forecast, which is 0 for sunny and 1 for cloudy, for C, since it is public information anyway
that both their web sites are weather related: Alice runs a website for outdoor activities,
Bob one for indoor activities, both in the same region. And the remaining uncertainty w.r.t.
their demand (Xk being 0 for “small” or 1 for “high”), i.e., H(Xk|C), is small. The causal
diagram for this scenario is G2 depicted in Figure 4. Based on this, Alice and Bob can
conclude that they will rarely require a large resource at the same time, and they can go for
spot resources as their respective (dominant) strategies πk.

5.4 Discussion

In some cases, the provider could infer the joint distribution of all Xk, based on past data,
which would contain all relevant information. However, the complete system is so complex
that it is unlikely to be stationary. Note that during each step, already some information is
revealed, but this is transparent to the stakeholders. Limitations of our approach are that (1)
the clients may not even be willing to reveal their p(xk), or (2) Xk may not be predictable
or the model may be wrong (although humans and organizations usually do plan ahead).
It needs to be emphasized, that here we ignore strategic aspects, which can lead to problems
in certain scenarios. As a potential next step, such aspects could be analyzed based on game
theory [22].

6 Experiments

6.1 Control and debugging problem on simple but real cloud system

Here we test small parts of our approach in Section 4.2 on a very simple, but real cloud
system: a physical server running a specific application (a web server) together with some
concurrent workload (another web server). The system we consider has the same causal
DAG as two of the examples in Section 4.3. And while the scenarios are generally similar,
the system we consider here is simpler, for experimental purposes.
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Figure 5: Causal diagram G1.
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Figure 6: X-axis: Number of simultaneous requests S = s. Y-axis: 99th percentile of
prediction p̂(l|do s) (dashed blue) is close to 99th percentile (solid blue) of ground truth test
data from p(l|do s) (subsample in gray).

A source H keeps sending simultaneous request to application and concurrent workload
(drawn from a multivariate correlated Poisson distribution), of which R are received by
the application and S by the concurrent workload. Then, for each request, the latency
(performance) of the application is measured in nanoseconds by L.

We examine how well Step 1A works. First, we infer the causal diagram G1 depicted in
Figure 5, as well as an estimate of p(r, s, l) from observational samples of the system, based
on Step 1A, and together denote them by (incomplete) M1. Then, from M1, using back-door
adjustment [17], we derive a prediction p̂(l|do s) for p(l|do s). Besides Step 1A, this tests the
applicability of Step 1C, when thinking of a simple controller that outputs a constant for
S (e.g. by putting the application on another machine with such a concurrent workload),
as well as Step 1D which relies on post-interventional distributions (of an updated model,
though). The outcome is depicted in Figure 6, where we use the 99th percentile as statistic,
which is common in cloud computing. It shows that the prediction is close to the ground
truth test data, both in magnitude and in trend.

6.2 Example of a more realistic cloud system

The experiments in the previous Section 6.1 were performed on an overly simplistic system.
Here we want to give an example of a preliminary, partial causal model (causal DAG plus
some knowledge on the mechanisms, e.g., additivity) of a more realistic system to which our
approach in Section 4.2, in particular the performance debugging in Step 1D, is meant to be
applied. Note that this is merely for illustration purposes, we do not test any hypothesis
here.8

We consider a cloud sever running serveral VMs. We focus on one specific VM, call it A
for the moment. Inside the VM A, a web sever B (more specifically: “lighttpd”) runs. We

8The inference of the causal model of – and the application of our approach to – such a complex
system turned out to be more difficult than expected. Therefore, no evaluation of our approach
applied to this system can be reported at this stage.
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Figure 7: Example of a preliminary causal DAG of a cloud system. Variables on the left side
are measured within the VM A, that runs together with other VMs on the cloud server. The
right side contains measurements outside the VM (the “hypervisor” is the program that is
responsible for allocating the cloud server’s resources among the VMs). The objective is to
minimize the latency of some web server B running in A, denoted by “srv_lat”, while keeping
utilization by other VMs, denoted by “concurrent_vm_count”, as high as possible. Possible
manipulations include reducing the workload within the VM A, denoted by “local_load”,
versus changing the number of concurrent VMs. If the causal model is good, it can help to
pick the optimal manipulations. The figure is taken from [8] which also gives descriptions of
the remaining variables not described here.

consider the following observed and hidden variables, among others, measured inside and
outside A9:

• “req_size”: size of the file requested by an internet user from the web server B;

• “local_load”: resource-consuming activity of other applications in A, besides B;

• “concurrent_vm_count”: number of VMs running concurrently with A on the
physical sever (outside A);

• “srv_lat”: latency of the web server B, which can be seen as part of the objective
which needs to be minimized.

We depict the partial causal model in Figure 7. It is taken from Carata [8], who also gives
descriptions for all other variables in the figure not discussed here. Note that this is a
model of an experimental system, while on a system in production, some variables, such as
“local_load” and “concurrent_vm_count”, could be influences by a (hidden) common cause,
similar to H in the previous experiment in Section 6.1.

This model was inferred as described in Step 1A, in an iterative and sequential way, based
on non-causal associational knowledge about the program execution structure (known from
the program code) as well as the general system architecture, further expert knowledge, and
independence tests on sampled data. As can be seen, often the integrated knowledge allows

9In cloud computing, it is important to distinguish between inside and outside of A, since, for
privacy reasons, often only things inside A can be known to the client that A belongs to.
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to draw conclusions on the additivity of mechanisms, which can be based on the fact the
runtime of one program essentially is the sum of the runtimes of its subroutines.
Such a model could help for decision making in various ways, for instance for the performance
debugging problem mentioned in Sections 4.1 and 4.3: A cloud client, the owner of A, may
observe a high latency (“srv_lat”) of his web server B, together with some other variables.
He wonders if, in this situation, the high latency is caused by other programs within his VM
A (“local_load”), by other, concurrent VMs (“concurrent_vm_count”) running on the same
physical cloud sever, or simply by large requests (“req_size”) coming in at that moment.
Based on this, he could conclude whether he should intervene on “local_load”, which may
be the simplest, or rather intervene on “concurrent_vm_count” say by changing to another
cloud product, such as a dedicated server, which may be more expensive.

6.3 Predictability-privacy problem on simulated data

For our approach in Section 5.2 to work, p̄(z) has to approximate p(z) reasonably well. Here
we examine to what extent this is the case in a simulated version of the toy example in
Section 5.3, additionally testing how tight the bound in Proposition 2 is. Compared to
the toy example, we restrict ourselves to spot resources, i.e., {0, 1} for Yk, and assume the
following specific mechanisms: The policy πk is for both to simply purchase their demand
(Yk := Xk), Clark’s pricing is “cheap” (Z = 0) versus “very expensive for one of them since
both want large” (Z = 1), in particular Z := Y1 ANDY2. Furthermore,

Xk := C XORDXORNXk
,

where D is some confounder which Alice and Bob do not want to reveal.
Now for “each” 0 ≤ r ≤ 0.5, we draw 1000 samples of C ∼ Bernoulli(0.5 − r), D ∼
Bernoulli(r) to find out how wrong p̄(z) gets when increasing the confounder D that is not
revealed or adjusted for, and NXk

∼ Bernoulli(0.2− 0.2r) (to also examine a little variation
in the noise strength). The outcome is depicted in Figure 8. It shows that p̄(z) is a good
estimate in this simple setting (which is also due to the fact that already p(x1), p(x2) alone
reveal something about p(x1, x2)). It also shows that (in this setting), the bound from
Proposition 2 may be improvable, as the dashed red line is far away from the solid red line.

7 Related work

Regarding Section 3, approximations to non-identifiable quantities in causal models were
examined by Balke and Pearl [3]. While their technique does not seem directly applicable to
the setup of Proposition 1, it may allow to derive stronger statements, i.e., further narrowing
down the set of possible p(z), than Proposition 2, which could be examined in future work.
We discussed some related work for Section 4, i.e., the control and debugging problem,
in Section 4.3. Additionally, maybe the work closest to our investigation in that section
is by Lemeire et al. [13], which suggests to use causal models for performance modeling
of programs, but does not consider counterfactuals, or more complex computing systems.
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Generally, the utilization of modularity based on causal models in that section is strongly
inspired by the theory of “transportability” of causal relations developed by Pearl and
Bareinboim [20], however, that theory has not been applied to (cloud) computing problems
so far. The relation between causality and control is also considered by Bottou et al. [7].
Regarding Section 5, the work by Angel et al. [1] can be seen as related in that they allow the
provider to hide their exact costs while still making some information of the costs available to
others. The work by McSherry and Talwar [14] investigates privacy-preserving mechanisms,
but does not consider the integration of the revealed information to an (estimate) of a causal
model.

8 Conclusions

This paper assayed how causal inference can, in principle, help with technological and
economical problems in cloud computing. Guided by these problems, we presented two
theoretical results for approximate causal inference, and reported initial experimental results.
The application of causal inference in this domain is, to the best of our knowledge, the first
of its kind. We believe the potential in this area is very significant, both for applications and
for methodological work. Problems in computing systems, which often require sophisticated
interventions to bring the system closer to its “optimum”, rarely fit the classical settings
that machine learning excels at.10

In particular, for issues such as integration of sandbox experiments, (formally) reasoning
about concepts such as causation, causal sufficiency and randomization seems crucial, and
methodology which neglects this, such as classical machine learning, may be prone to errors.
Another concept which plays an important role in causal modeling (but, of course, also in
some other areas) is that of identifiability, which helps to “critically” reason about what can
and what cannot be inferred based on the given. We used it for the control problem for cases
that only some “modules” of the system vary.
A next step would be to extend the experimtens on real cloud systems, such as the system
for which a preliminary model was derived in Section 6.2, and based on this, advance the
approach we sketched in Section 4. Another future step would be to use aspects of game
theory and mechanism design, to extend our approach for the predictability-privacy trade-off
in Section 5.

A Appendix

Here we present proofs for Section 3.

A.1 Generalized version and proof of Proposition 1

We start by stating and proving a generalization of Proposition 1.
Proposition 3 (Generalization of Proposition 1). Let M0 be a FCM over discrete variables
that induces a GCM M . Let the triple (X,Y, Z) of (sets of) variables in M be such that
(Y ⊥⊥ An(Z)|Z)M (i.e., are d-separated [17]) and X does not influence W := Z \X. Let E
be an arbitrary set of variables in M . Let

pZ(Ydo X=x = y|e) :=
∑

w

p(y|doX = x,w)p(w|e). (9)

Then

D(p(Ydo X=x|E)‖pZ(Ydo X=x|E)) ≤ H(E|Z) (10)

(where p(Ydo X=x|E) is defined w.r.t. M0 and pZ(Ydo X=x|E) w.r.t. M).
10Note that cloud computing systems are a good example where application of data-driven methods

has to be understood and optimized within highly complex socio-technical interactions and not just
in isolation as was the classical focus.
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This is a generalization of Proposition 1. To see this, let Z denote the set of root nodes of
M . This implies

pZ(Ydo X=x = y|e) = p̃(Ydo X=x = y|e)

for pZ(Ydo X=x = y|e) as defined above and p̃(Ydo X=x = y|e) as defined as in Section 3.1.
But Proposition 3 above applied to this pZ(Ydo X=x = y|e) coincides with Proposition 1.

Proof. Let U1 be the set (tuple) of background variables that influence Z and U0 = U \ U1.
Then

pZ(Ydo X=x = y|e) (11)

=
∑

w

p(y|doX = x,w)p(w|e) (12)

=
∑
w,u0

p(y|doX = x,w, u0)p(w|e)p(u0|doX = x,w) (13)

=
∑
w,u0

p(y|doX = x,w, u0)p(w|e)p(u0|w) (14)

=
∑
w,u0

p(y|doX = x,w, u0)p(w|e)p(u0), (15)

where Equation (14) is due to the fact that the distribution of U0 is invariant and X does
not influence W , so W can be written as the same function of U0 in M0 and (M0)do X=x;
and Equation (15) is due to the fact that W ⊂ Z and Z ⊥⊥ U0 by definition of U0.
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On the other hand, we have

p(Ydo X=x = y|e) (16)

=
∑

u:p(u,e)>0

p(y|doX = x, u)p(u|e) (17)

=
∑

u0,u1:p(u0,u1,e)>0

p(y|doX = x, u0, u1)p(u0, u1|e) (18)

=
∑

u0,u1,w:p(u0,u1,e)>0

p(y, w|doX = x, u0, u1)p(u0, u1|e) (19)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0

p(y, w|doX = x, u0, u1)p(u0, u1|e) (20)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0

p(y|doX = x, u0, u1, w)p(w|doX = x, u1, u0)p(u0, u1|e)

(21)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0

p(y|doX = x, u0, w)p(w|doX = x, u1, u0)p(u0, u1|e) (22)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0

p(y|doX = x, u0, w)p(w|u1, u0)p(u0, u1|e) (23)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0

p(y|doX = x, u0, w)p(w|u0, u1, e)p(u0, u1|e) (24)

=
∑

u0,u1,w:p(u0,u1,e),p(u0,u1,w)>0

p(y|doX = x, u0, w)p(w, u0, u1|e) (25)

=
∑

u0,u1,w:p(u0,u1,e,w)>0

p(y|doX = x, u0, w)p(w, u0, u1|e) (26)

=
∑

u0,w:p(u0,e,w)>0

p(y|doX = x, u0, w)
∑

u1:p(u0,u1,e,w)>0

p(w, u0, u1|e) (27)

=
∑

u0,w:p(u0,e,w)>0

p(y|doX = x, u0, w)p(w, u0|e) (28)

=
∑
u0,w

p(y|doX = x, u0, w)p(w, u0|e), (29)

where Equation (22) is due to Markovianity and (Y ⊥⊥ An(Z)|Z)M , which implies (Y ⊥⊥
U1|Z)M , and thus (Y ⊥⊥ U1|W )Mdo X=x

, Equation (23) follows from the fact that X does not
influence W , Equation (24) follows from the fact that U1 already determines W .

Note that p(w|e)p(u0) = 0 implies p(w, u0|e) = 0 and therefore

D[p(Ydo X=x|E)‖pW (Ydo X=x|D)]

is defined.
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Now we can calculate

D[p(Ydo X=x|E)‖pZ(Ydo X=x|E)] (30)

=
∑

e

p(e)D[p(Ydo X=x|e)‖pZ(Ydo X=x|e)] (31)

≤
∑

e

p(e)D[p(W,U0|e)‖p(W |e)p(U0)] (32)

=
∑

e,w,u0

p(w, u0, e) log p(w, u0|e)
p(w|e)p(u0) (33)

=
∑

e,w,u0

p(w, u0, e) log p(w, u0, e)
p(w, e)p(u0) (34)

= I(W,E : U0) (35)
≤ I(Z,E : U0) (36)
= I(Z : U0) + I(E : U0|Z) (37)
= 0 + H(E|Z)−H(E|U0, Z), (38)

where inequality (32) follows from the monotonicity (which follows from the chain rule) of
the Kullback-Leibler divergence [11] together with equations (29) and (15), Equation (37) is
the chain rule for mutual information, and I(W : U0) = 0 is due to U0 not influencing W
and Markovianity.

Note that, if we chose the set Z in the above proposition such that it is as “close” (in the
causal diagram) to Y as possible, this could yield better approximations pZ(Ydo X=x = y|e)
than simply letting Z be the root nodes, as done in p̄(Ydo X=x = y|e). We leave this as a
question for future work.

A.2 Proof of Proposition 2

Here we give a proof for Proposition 2.

Proof. We calculate

D(p(Z)‖p̄(Z)) (39)
≤ D(p(X0, . . . , XK , C)‖p(C)Πkp(Xk|C))
= D(p(C)p(X0|C)p(X1|X0, C) · · · p(XK |X0, . . . , XK−1, C)‖p(X)Πkp(Xk|C))

=
∑

x0,...,xK ,c

p(x0, . . . , xK , c) log p(c)
p(c)

p(x0|c)
p(x0|c)

p(x1|x0, c)
p(x1|c)

p(x2|x0, x1, c)
p(x2|c)

· · ·

· p(xK |x0, . . . , xK−1, c)
p(xK |c)

=
∑

x0,...,xK ,c

p(x0, . . . , xK , c) log p(c)
p(c)

p(x0|c)
p(x0|c)

p(x1, x0|c)
p(x1|c)p(x0|c)

p(x2, x0, x1|c)
p(x2|c)p(x0, x1|c)

· · ·

· p(xK , x0, . . . , xK−1|c)
p(xK |c)p(x0, . . . , xK−1|c)

= I(X1 : X0|C) + I(X2 : X0, X1|C) + . . .+ I(XK : X0, . . . , XK−1|C)
≤ H(X1|C) + H(X2|C) + . . .+ H(XK |C),

(40)

where inequality (39) follows from the monotonicity (which follows from the chain rule) of
the Kullback-Leibler divergence [11].
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