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1 Proof of Lemma 1

Lemma 1. Under the assumption made above, the
joint distribution of X1, X2, X3 induced by a causal
model M or any post-interventional model MdoXi=x

has a density w.r.t. the Lebesgue measure (in the con-
tinuous case) or counting measure (in the discrete
case), respectively. Moreover, this density factorizes
according to the causal DAG belonging to the respec-
tive model.
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Figure 1: W.l.o.g. we assume this causal DAG.

Proof. We only treat the continuous case, the discrete
case is straight forward.

Recall our assumption that given a causal model M
with causal DAG G = (V,E), for each Xi ∈ V , the
random variable fi(pai, Ni) has a density qi(xi; pai)
w.r.t. the Lebesgue measure. Note that this implies,
that also in any post-interventional model MdoXi=x,

the random variables f
MdoXi=x

i (pa
MdoXi=x

i , Ni) have
densities w.r.t. the Lebesgue measure which can easily
obtaine from the qi(xi; pai). Hence, w.l.o.g., we only
prove the lemma w.r.t. M .

In what follows, we will only consider the case where
the causal DAG is fully connected, the other cases
work similarly. W.l.o.g. we assume the DAG in Figure
1.

Let q(x1, x2, x3) :=
∏

i qi(xi; pai).

To see that q(x1, x2, x3) factorizes according to G, note

that

p(x3|x2, x1) =
q3(x3;x1, x2)q2(x2;x1)q1(x1)∫
q3(x3;x1, x2)q2(x2;x1)q1(x1)dx3

=
q3(x3;x1, x2)q2(x2;x1)q1(x1)

q2(x2;x1)q1(x1)

= q3(x3;x1, x2).

Similary one calculates p(x2|x1) = q(x2;x1) and
p(x1) = q(x1).

It remains to show that q(x1, x2, x3) it is a density for
the joint distribution P (X1, X2, X3).

Keep in mind that for measurable f, Y we have [Bo-
gachev, 2007]∫

Y (s)dPf(N)(s) =

∫
Y (f(r))dPN (r). (1)

Let [·] denote the characteristic function (i.e. it equals
1 if the statement inside the brackets is true and 0
otherwise). Now we can calculate



∫ a

−∞

∫ b

−∞

∫ c

−∞
q1(x1)q2(x2;x1)q3(x3;x1, x2)dx3dx2dx1 (2)

=

∫
[x1 ≤ a]

∫
[x2 ≤ b]

∫
[x3 ≤ c]dPf3(x1,x2,N3)(x3)dPf2(x1,N2)(x2)dPf1(N1)(x1) (3)

=

∫
[x1 ≤ a]

∫
[x2 ≤ b]

∫
[f3(x1, x2, n3) ≤ c]dPN3

(n3)dPf2(x1,N2)(x2)dPf1(N1)(x1) (4)

=

∫
[x1 ≤ a]

∫
[f2(x1, n2) ≤ b]

∫
[f3(x1, f2(x1, n2), n3) ≤ c]dPN3(n3)dPN2(n2)dPf1(N1)(x1) (5)

=

∫
[f1(n1) ≤ a]

∫
[f2(f1(n1), n2) ≤ b]

∫
[f3(f1(n1), f2(f1(n1), n2), n3) ≤ c]dPN3

(n3)dPN2
(n2)dPN1

(n1) (6)

=

∫
[f1(n1) ≤ a][f2(f1(n1), n2) ≤ b][f3(f1(n1), f2(f1(n1), n2), n3) ≤ c]dPN1,N2,N3(n1, n2, n3) (7)

= E
[
[f1(N1) ≤ a][f2(f1(N1), N2) ≤ b][f3(f1(N1), f2(f1(N1), N2), N3) ≤ c]

]
(8)

= P (X1 ≤ a,X2 ≤ b,X3 ≤ c), (9)

where equations (4), (5), (6) follow by applying equa-
tion (1), and equation (7) follow from the indepen-
dence of the noise terms Ni.

This proofs that q(x1, x2, x3) is a density of
P (X1, X2, X3) w.r.t. the Lebesgue measure.

2 Proof of Lemma 2

Lemma 2. For all x we have

p(Y |X = x, doX=x) = p(Y |X = x),

E[Y |X = x,doX=x] = E[Y |X = x].

Proof. Based on the proof for Lemma 1, we have

p(u, x′, y|doX=x′) = qU (u)qX(x′;u)qY (y;u, x
′) (10)

= p(u)p(x′|u)p(y|u, x′), (11)

where equation (10) holds true because qU (u), qX(x;u)

and qY (y;u, x
′) are the densities for f

MdoXi=x′

U (NU ),

f
MdoXi=x′

X (u,NX) and f
MdoXi=x′

Y (u,NY ), respectively.

Equation (11) implies that

p(u, x′, y|doX=x′) = p(u, x′, y),

and hence

p(y|X = x′,doX=x′) = p(y|x′).

3 Proof of Theorem 5

Theorem 5. For all x√
FY |X(x)−

√
F2

Y |X,doX(x, x) ≤
√
F1

Y |X,doX(x, x).

Proof. First note that by the chain rule

dx log p(y|X=x,doX=x)

= ∂1 log p(y|X=x, doX=x)

+ ∂2 log p(y|X=x, doX=x).

By Lemma 2 we have p(y|X=x) = p(y|X=x, doX=x)
for all x, y.

Together we obtain

(
E[(dx log p(y|X=x))2]

) 1
2

= (E[(∂1p(y|X=x, doX=x)

+∂2p(y|X=x, doX=x))2]
) 1

2

≤
(
E[(∂1p(y|X=x, doX=x))2]

) 1
2

+
(
E[(∂2p(y|X=x,doX=x))2]

) 1
2 .

Note that the expectation is taken w.r.t. p(y|x).

4 Proof of Proposition 1

Proposition 1. In the given scenario we have
I(U : X) ≤ H(X)p(W=1).



Proof. We calculate

I(U : X) ≤ I(U : X) + I(U : W |X) = I(U : W,X)

= I(U : W ) + I(U : X|W )

= I(U : X|W=0)p(W=0) + I(U : X|W=1)p(W=1)

= I(U : X|W=1)p(W=1) ≤ H(X)p(W=1).
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