# Estimating Causal Effects by Bounding Confounding - Supplementary Material - 

## 1 Proof of Lemma 1

Lemma 1. Under the assumption made above, the joint distribution of $X_{1}, X_{2}, X_{3}$ induced by a causal model $M$ or any post-interventional model $M_{\text {do } X_{i}=x}$ has a density w.r.t. the Lebesgue measure (in the continuous case) or counting measure (in the discrete case), respectively. Moreover, this density factorizes according to the causal $D A G$ belonging to the respective model.


Figure 1: W.l.o.g. we assume this causal DAG.
Proof. We only treat the continuous case, the discrete case is straight forward.

Recall our assumption that given a causal model $M$ with causal DAG $G=(V, E)$, for each $X_{i} \in V$, the random variable $f_{i}\left(\mathrm{pa}_{i}, N_{i}\right)$ has a density $q_{i}\left(x_{i} ; \mathrm{pa}_{i}\right)$ w.r.t. the Lebesgue measure. Note that this implies, that also in any post-interventional model $M_{\text {do } X_{i}=x}$, the random variables $f_{i}^{M_{\mathrm{do} X_{i}=x}}\left(\mathrm{pa}_{i}^{M_{\text {do } X_{i}=x}}, N_{i}\right)$ have densities w.r.t. the Lebesgue measure which can easily obtaine from the $q_{i}\left(x_{i} ; \mathrm{pa}_{i}\right)$. Hence, w.l.o.g., we only prove the lemma w.r.t. $M$.

In what follows, we will only consider the case where the causal DAG is fully connected, the other cases work similarly. W.l.o.g. we assume the DAG in Figure 1.

Let $q\left(x_{1}, x_{2}, x_{3}\right):=\prod_{i} q_{i}\left(x_{i} ; \mathrm{pa}_{i}\right)$.
To see that $q\left(x_{1}, x_{2}, x_{3}\right)$ factorizes according to $G$, note that

$$
\begin{aligned}
p\left(x_{3} \mid x_{2}, x_{1}\right) & =\frac{q_{3}\left(x_{3} ; x_{1}, x_{2}\right) q_{2}\left(x_{2} ; x_{1}\right) q_{1}\left(x_{1}\right)}{\int q_{3}\left(x_{3} ; x_{1}, x_{2}\right) q_{2}\left(x_{2} ; x_{1}\right) q_{1}\left(x_{1}\right) \mathrm{d} x_{3}} \\
& =\frac{q_{3}\left(x_{3} ; x_{1}, x_{2}\right) q_{2}\left(x_{2} ; x_{1}\right) q_{1}\left(x_{1}\right)}{q_{2}\left(x_{2} ; x_{1}\right) q_{1}\left(x_{1}\right)} \\
& =q_{3}\left(x_{3} ; x_{1}, x_{2}\right)
\end{aligned}
$$

Similary one calculates $p\left(x_{2} \mid x_{1}\right)=q\left(x_{2} ; x_{1}\right)$ and $p\left(x_{1}\right)=q\left(x_{1}\right)$.
It remains to show that $q\left(x_{1}, x_{2}, x_{3}\right)$ it is a density for the joint distribution $P\left(X_{1}, X_{2}, X_{3}\right)$.

Keep in mind that for measurable $f, Y$ we have [Bogachev, 2007]

$$
\begin{equation*}
\int Y(s) \mathrm{d} P_{f(N)}(s)=\int Y(f(r)) \mathrm{d} P_{N}(r) \tag{1}
\end{equation*}
$$

Let [•] denote the characteristic function (i.e. it equals 1 if the statement inside the brackets is true and 0 otherwise). Now we can calculate

$$
\begin{align*}
& \int_{-\infty}^{a} \int_{-\infty}^{b} \int_{-\infty}^{c} q_{1}\left(x_{1}\right) q_{2}\left(x_{2} ; x_{1}\right) q_{3}\left(x_{3} ; x_{1}, x_{2}\right) \mathrm{d} x_{3} \mathrm{~d} x_{2} \mathrm{~d} x_{1}  \tag{2}\\
& =\int\left[x_{1} \leq a\right] \int\left[x_{2} \leq b\right] \int\left[x_{3} \leq c\right] \mathrm{d} P_{f_{3}\left(x_{1}, x_{2}, N_{3}\right)}\left(x_{3}\right) \mathrm{d} P_{f_{2}\left(x_{1}, N_{2}\right)}\left(x_{2}\right) \mathrm{d} P_{f_{1}\left(N_{1}\right)}\left(x_{1}\right)  \tag{3}\\
& =\int\left[x_{1} \leq a\right] \int\left[x_{2} \leq b\right] \int\left[f_{3}\left(x_{1}, x_{2}, n_{3}\right) \leq c\right] \mathrm{d} P_{N_{3}}\left(n_{3}\right) \mathrm{d} P_{f_{2}\left(x_{1}, N_{2}\right)}\left(x_{2}\right) \mathrm{d} P_{f_{1}\left(N_{1}\right)}\left(x_{1}\right)  \tag{4}\\
& =\int\left[x_{1} \leq a\right] \int\left[f_{2}\left(x_{1}, n_{2}\right) \leq b\right] \int\left[f_{3}\left(x_{1}, f_{2}\left(x_{1}, n_{2}\right), n_{3}\right) \leq c\right] \mathrm{d} P_{N_{3}}\left(n_{3}\right) \mathrm{d} P_{N_{2}}\left(n_{2}\right) \mathrm{d} P_{f_{1}\left(N_{1}\right)}\left(x_{1}\right)  \tag{5}\\
& =\int\left[f_{1}\left(n_{1}\right) \leq a\right] \int\left[f_{2}\left(f_{1}\left(n_{1}\right), n_{2}\right) \leq b\right] \int\left[f_{3}\left(f_{1}\left(n_{1}\right), f_{2}\left(f_{1}\left(n_{1}\right), n_{2}\right), n_{3}\right) \leq c\right] \mathrm{d} P_{N_{3}}\left(n_{3}\right) \mathrm{d} P_{N_{2}}\left(n_{2}\right) \mathrm{d} P_{N_{1}}\left(n_{1}\right)  \tag{6}\\
& =\int\left[f_{1}\left(n_{1}\right) \leq a\right]\left[f_{2}\left(f_{1}\left(n_{1}\right), n_{2}\right) \leq b\right]\left[f_{3}\left(f_{1}\left(n_{1}\right), f_{2}\left(f_{1}\left(n_{1}\right), n_{2}\right), n_{3}\right) \leq c\right] \mathrm{d} P_{N_{1}, N_{2}, N_{3}}\left(n_{1}, n_{2}, n_{3}\right)  \tag{7}\\
& =\mathbb{E}\left[\left[f_{1}\left(N_{1}\right) \leq a\right]\left[f_{2}\left(f_{1}\left(N_{1}\right), N_{2}\right) \leq b\right]\left[f_{3}\left(f_{1}\left(N_{1}\right), f_{2}\left(f_{1}\left(N_{1}\right), N_{2}\right), N_{3}\right) \leq c\right]\right]  \tag{8}\\
& =P\left(X_{1} \leq a, X_{2} \leq b, X_{3} \leq c\right), \tag{9}
\end{align*}
$$

where equations (4), (5), (6) follow by applying equation (1), and equation (7) follow from the independence of the noise terms $N_{i}$.
This proofs that $q\left(x_{1}, x_{2}, x_{3}\right)$ is a density of $P\left(X_{1}, X_{2}, X_{3}\right)$ w.r.t. the Lebesgue measure.

## 2 Proof of Lemma 2

Lemma 2. For all $x$ we have

$$
\begin{aligned}
& p(Y \mid X=x, \text { do } X=x)=p(Y \mid X=x) \\
& \mathbb{E}[Y \mid X=x, \text { do } X=x]=\mathbb{E}[Y \mid X=x]
\end{aligned}
$$

Proof. Based on the proof for Lemma 1, we have

$$
\begin{align*}
p\left(u, x^{\prime}, y \mid \text { do } X=x^{\prime}\right) & =q_{U}(u) q_{X}\left(x^{\prime} ; u\right) q_{Y}\left(y ; u, x^{\prime}\right)  \tag{10}\\
& =p(u) p\left(x^{\prime} \mid u\right) p\left(y \mid u, x^{\prime}\right), \tag{11}
\end{align*}
$$

where equation (10) holds true because $q_{U}(u), q_{X}(x ; u)$ and $q_{Y}\left(y ; u, x^{\prime}\right)$ are the densities for $f_{U}^{M_{\mathrm{do} X_{i}=x^{\prime}}}\left(N_{U}\right)$, $f_{X}^{M_{\mathrm{do} X_{i}=x^{\prime}}}\left(u, N_{X}\right)$ and $f_{Y}^{M_{\mathrm{do} X_{i}=x^{\prime}}}\left(u, N_{Y}\right)$, respectively.
Equation (11) implies that

$$
p\left(u, x^{\prime}, y \mid \text { do } X=x^{\prime}\right)=p\left(u, x^{\prime}, y\right)
$$

and hence

$$
p\left(y \mid X=x^{\prime} \text {, do } X=x^{\prime}\right)=p\left(y \mid x^{\prime}\right)
$$

## 3 Proof of Theorem 5

Theorem 5. For all $x$

$$
\sqrt{\mathcal{F}_{Y \mid X}(x)}-\sqrt{\mathcal{F}_{Y \mid X, \text { do } X}^{2}(x, x)} \leq \sqrt{\mathcal{F}_{Y \mid X, \text { do } X}^{1}(x, x)} .
$$

Proof. First note that by the chain rule

$$
\begin{aligned}
& \mathrm{d}_{x} \log p(y \mid X=x, \text { do } X=x) \\
& \quad=\partial_{1} \log p(y \mid X=x, \text { do } X=x) \\
& \quad+\partial_{2} \log p(y \mid X=x, \text { do } X=x)
\end{aligned}
$$

By Lemma 2 we have $p(y \mid X=x)=p(y \mid X=x$, do $X=x)$ for all $x, y$.
Together we obtain

$$
\begin{aligned}
& \left(\mathbb{E}\left[\left(\mathrm{d}_{x} \log p(y \mid X=x)\right)^{2}\right]\right)^{\frac{1}{2}} \\
& =\left(\mathbb { E } \left[\left(\partial_{1} p(y \mid X=x, \text { do } X=x)\right.\right.\right. \\
& \left.\left.\left.\quad+\partial_{2} p(y \mid X=x, \text { do } X=x)\right)^{2}\right]\right)^{\frac{1}{2}} \\
& \leq\left(\mathbb{E}\left[\left(\partial_{1} p(y \mid X=x, \text { do } X=x)\right)^{2}\right]\right)^{\frac{1}{2}} \\
& \quad+\left(\mathbb{E}\left[\left(\partial_{2} p(y \mid X=x, \text { do } X=x)\right)^{2}\right]\right)^{\frac{1}{2}} .
\end{aligned}
$$

Note that the expectation is taken w.r.t. $p(y \mid x)$.

## 4 Proof of Proposition 1

Proposition 1. In the given scenario we have $\mathrm{I}(U: X) \leq \mathrm{H}(X) p(W=1)$.

Proof. We calculate

$$
\begin{aligned}
& \mathrm{I}(U: X) \leq \mathrm{I}(U: X)+\mathrm{I}(U: W \mid X)=\mathrm{I}(U: W, X) \\
& =\mathrm{I}(U: W)+\mathrm{I}(U: X \mid W) \\
& =\mathrm{I}(U: X \mid W=0) p(W=0)+\mathrm{I}(U: X \mid W=1) p(W=1) \\
& =\mathrm{I}(U: X \mid W=1) p(W=1) \leq \mathrm{H}(X) p(W=1)
\end{aligned}
$$

## References

V. Bogachev. Measure Theory. Springer, 2007.

